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ABSTRACT
A heterogeneous information network (HIN) is used to model
objects of different types and their relationships. Objects
are often associated with properties such as labels. In many
applications, such as curated knowledge bases for which ob-
ject labels are manually given, only a small fraction of the
objects are labeled. Studies have shown that transductive
classification is an effective way to classify and to deduce
labels of objects, and a number of transductive classifiers
have been put forward to classify objects in an HIN. We
study the performance of a few representative transductive
classification algorithms on HINs. We identify two funda-
mental properties, namely, cohesiveness and connectedness,
of an HIN that greatly influence the effectiveness of trans-
ductive classifiers. We define metrics that measure the two
properties. Through experiments, we show that the two
properties serve as very effective indicators that predict the
accuracy of transductive classifiers. Based on cohesiveness
and connectedness we derive (1) a black-box tester that eval-
uates whether transductive classifiers should be applied for a
given classification task and (2) an active learning algorithm
that identifies the objects in an HIN whose labels should be
sought in order to improve classification accuracy.

Keywords
heterogeneous information network; transductive classifica-
tion; knowledge base

1. INTRODUCTION
Networks (or graphs) model real world entities and their

relationships by objects and links (or edges). A heteroge-
neous information network (HIN) is a network whose ob-
jects are of different types and whose links represent different
kinds of relationships between objects. Compared with ho-
mogeneous information networks (in which all objects/links
are of one single type), an HIN is much more expressive
in capturing complex real-world entities and their relation-
ships. HINs are used in many data sources. These HINs
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vary in terms of their complexities — from relatively simple
bibliographic networks (e.g., DBLP) to very complex knowl-
edge bases. A representative example of the latter is Yago1,
which captures information derived from Wikipedia, Word-
Net and GeoNames. Yago is a repository of information
on more than 10 million entities (such as persons, organiza-
tions, cities, etc.) and it records more than 120 million facts
about these entities. Another example is Freebase2, which is
a community-curated knowledge base of well-known people,
places and things. Information on Yago and Freebase can
be modeled as RDF graphs, which are examples of HINs.

To enrich the information of HINs, objects are often as-
sociated with labels. For example, authors in DBLP can
be labeled by their areas of research and movies in IMDB
can be labeled by their genres. These descriptive labels fa-
cilitate information retrieval and knowledge understanding,
and they allow interesting logical deductions on the data
to be made. Labeling objects in HINs, however, requires
very costly manual efforts. For large HINs, such as Yago
and Freebase, we observe that only a small fraction of the
objects are given their desired labels. For example, we in-
spected movie objects on Yago. We found that around 75%
of the adventure movies are not properly labeled with the
genre. The problem of missing labels severely limits the
knowledge bases in their support of knowledge reasoning.

In recent years, a number of classification algorithms have
been devised to deduce object labels in an HIN. Generally,
classification methods can be categorized into inductive clas-
sification and transductive classification. Inductive meth-
ods [7, 16, 11, 15] use objects with known labels to train
a model with which the labels of unknown objects are de-
rived. Transductive methods [9, 10, 24, 26], on the other
hand, utilize the “relatedness” between objects to “propa-
gate” labels. For example, if a labeled object x is connected
by an edge to an unlabeled object y, then the label of x is
propagated to y because the two objects are related by an
edge relation. Besides edge relations, objects can also be
related by “path relations”, which, in the context of HINs,
are often called meta-paths. A meta-path is a schematic se-
quence of object types. For example, consider DBLP. If A
and P represent object types author and paper, respectively,
and that an edge between an object of type A and an object
of type P represents authorship, then the meta-path A-P-
A expresses the co-authorship relation between author ob-
jects. How “strongly” the label of an object x influences (or

1http://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago
2https://www.freebase.com/
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Table 1: Accuracies of transductive classifiers
Dataset

% of labeled
GNetMine HetPathMine Grempt

objects
DBLP 0.5% 88.0% 86.1% 89.3%
Yago 5% 47.5% 48.4% 49.2%

Freebase 5% 63.7% 64.7% 65.4%

is propagated to) another object y depends on the strength
of the relations between the two objects. We will elaborate
more on transductive classifiers in Section 3. Typically, in-
ductive classification requires a substantial set of training
(labeled) data to construct an accurate model. For HINs
with scarce labeled data, transductive methods are more ef-
fective. Hence, we focus on transductive classifiers.

We studied existing transductive classifiers on HINs [4, 8,
18] and made two observations: (1) We performed a cross-
sectional study (applying the algorithms on the same HIN
classification tasks) and found that given the same task, the
accuracies of the classifiers are comparable. (2) We per-
formed a longitudinal study (applying the same algorithm
across different HIN tasks) and found that the performance
of a transductive classifier varies greatly over different tasks.

To illustrate, we apply three HIN transductive classifiers,
namely, GNetMine [4], HetPathMine [8] and Grempt [18] on
three HINs: DBLP, Yago and Freebase. (We will describe
the three classifiers in detail in Section 3.) For DBLP, the
task is to classify authors into their research areas. For
Yago and Freebase, the tasks are to classify movie objects
into their genres. (More details on these datasets and classi-
fication tasks will be given in Section 4.) Table 1 shows part
of the experimental results. If we look at a cross section (a
row) of the table, we see that the three algorithms give very
similar accuracies for the same task. For example, the accu-
racies range from 47.5% to 49.2% in the classification of Yago
movies. On the other hand, if we look at the table longitu-
dinally (along a column), the performance of each algorithm
varies greatly. For example, GNetMine is 47.5% accurate in
classifying Yago movies but it is 88% accurate in classifying
DBLP authors. Noting that for DBLP, in our experiment,
only 0.5% of the author objects are labeled (i.e., are included
in the training set), which is 10 times smaller than those of
the other tasks, the differences in accuracy across the clas-
sification tasks are very drastic. From our observations, we
argue that in the study of transductive classifiers on HINs, it
is perhaps not necessary to spend much efforts in fine tun-
ing the classification algorithms, as that would only bring
marginal benefits. Rather, one should analyze the intrinsic
properties of an HIN and the classification task so as to un-
derstand the factors that impact the success of transductive
classification. Our objective is to shed light on the latent
principles behind transductive classification in HINs and to
provide insightful reference for further research on the topic.
Our main contributions are summarized as follows.
• While previous works focus mostly on the design of clas-
sification algorithms, we give an in-depth analysis on data
(HINs) and classification tasks. We identify two influential
factors, namely cohesiveness and connectedness, that gen-
erally affect the effectiveness of transductive classifiers. In-
tuitively, an HIN is highly cohesive if object relations are
mostly between objects of the same label and an HIN is
highly connected if objects of the same label are all or mostly
“related”. As we have mentioned above, relatedness between
two objects refers to how well they are connected via edges

Table 2: Descriptions of symbols
Notation Description
G = (V,E) An HIN G with object set V and link set E
T , Ti,m T = {T1, T2, ..., Tm}, a set of m object types

Xi,XLi ,X∗i The set of ( /labeled/unlabeled) type Ti objects
TG = (T ,R) Network schema of HIN G
pxu;xv ` P pxu;xv is an instance of the meta-path P
L = {l1, ..., lk} A set of k labels
GTi,P , GP TSSN of object type Ti induced by meta-path P

L, CL A labeling, a label-induced clustering
Υ, Ψ Cohesiveness and connectedness

and paths in an HIN. Hence, cohesiveness and connectedness
are structural properties of a network for a given classifica-
tion task. For HINs of low cohesiveness and connectedness,
we show that transductive classification performs poorly re-
gardless of the algorithm used. We propose quantitative
measures of cohesiveness and connectedness and discuss how
these measures can be practically estimated given an HIN.
• We design a black-box tester that evaluates an HIN and
a classification task. The tester estimates the HIN’s cohe-
siveness and connectedness and recommends whether trans-
ductive classification should be applied. We carry out case
studies and show that the tester is accurate in making its
recommendation.
• We propose an active learning strategy ALCC (Active
Learning based on Cohesiveness and Connectedness). Ac-
tive learning is about wisely selecting objects for which la-
bels are sought. A good active learning strategy would select
those objects that improve the classification accuracy the
most. ALCC aims at identifying those objects that bring
the best improvement in cohesiveness and connectedness,
leading to good improvement in classification accuracy. We
show that ALCC compares favorably against other active
learning methods.

The rest of the paper is organized as follows. Section 2
gives some basic definitions. Section 3 mentions related
works. In Section 4, we analyze HINs and classification
tasks. We give formal definitions of cohesiveness and con-
nectedness, and present measures that quantify the two prop-
erties. In Section 5, we discuss how the two properties can
be leveraged in deriving a black-box tester and an active
learner. Section 6 presents experimental results. Finally,
Section 7 concludes the paper.

2. DEFINITIONS
In this section we give some basic definitions. Table 2

summarizes some of the symbols used in this paper.

Definition 1. Heterogeneous Information Network
(HIN) [4]. Let T = {T1, ..., Tm} be a set of m object types.
For each type Ti, let ni and Xi = {xi1, ..., xini} be the num-
ber and the set of objects of type Ti, respectively. An HIN
is a graph G = (V,E), where V =

⋃m
i=1 Xi, and E is a set of

links, each represents a binary relation between two objects
in V . If m = 1 (i.e., there is only one object type), G reduces
to a homogeneous information network. 2

Definition 2. Network schema [13]. A network schema
is the meta template of an HIN G = (V,E). Let (1) φ :
V → T be an object-type mapping that maps an object
in V into its type, and (2) ψ : E → R be a link-relation
mapping that maps a link in E into a relation in a set of
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Figure 1: An HIN (a), its schematic graph (b), TSSNs

derived from meta-paths MAM (c), MDM (d), and MPM (e)

relations R. The network schema of an HIN G, denoted
by TG = (T ,R), shows how objects of different types are
related by the relations in R. TG can be represented by a
schematic graph with T and R being the node set and the
edge set, respectively. Specifically, there is an edge (Ti, Tj)
in the schematic graph iff there is a relation inR that relates
objects of type Ti to objects of type Tj . 2

Figure 1(a) shows an example HIN that models movie
information. The HIN consists of four object types: T = {
movie (3), actor(2), director(#), producer(4) }. There are
also three relations in R, which are illustrated by the three
edges in the schematic graph (Figure 1(b)). For example, the
relation between actor and movie carries the information of
which actor has acted in which movie.

Definition 3. Meta-path [13]. A meta-path P is a path
defined on the schematic graph of a network schema. A

meta-path P: T1
R1−→ · · · Rl−→ Tl+1 defines a composite re-

lation R = R1 ◦ · · · ◦ Rl that relates objects of type T1 to
objects of type Tl+1. If two objects xu and xv are related
by the composite relation R, then there is a path, denoted
by pxu;xv , that connects xu to xv in G. Moreover, the se-
quence of links in pxu;xv matches the sequence of relations
R1, ..., Rl based on the link-relation mapping ψ. We say that
pxu;xv is a path instance of P, denoted by pxu;xv ` P. 2

As an example, the path pM1;M3 = M1 → A2 → M3
in Figure 1(a) is an instance of the meta-path Movie-Actor-
Movie (abbrev. MAM). Meta-paths are used in many data
mining tasks on HINs. Grempt, for example, utilizes meta-
paths that relate objects of the same type (i.e., T1 = Tl+1)
to obtain homogeneous sub-networks through which labels
are propagated to perform transductive classification.

Definition 4. Topology Shrinking Sub-network (TSSN)
[18]. Given an HIN G = (V,E), the TSSN of a certain ob-
ject type Ti derived from a meta-path P is a graph whose
nodes consist of only objects of type Ti and whose edges
connect objects that are related by instances of P. For-
mally, the TSSN is the graph GTi,P = (Xi, ETi), where
ETi = {euv|pxu;xv ` P, xu, xv ∈ Xi}. We write GP in-
stead of GTi,P if the object type Ti is implicitly known. 2

Figures 1(c)-(e) show the TSSNs of type Movie derived
from the meta-paths MAM, MDM and MPM, respectively.
A TSSN shows how objects of a certain type are related
by the composite relation given by a meta-path. For exam-
ple, the meta-path MAM relates two movie objects if those
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Figure 2: Labeling and label-induced clustering

movies share an actor. In Figure 1(c), movies M1 and M2
are connected by an edge in the TSSN because actor A1
acted in both movies.

Definition 5. Labeling. Given an HIN G = (V,E) and a
set of labels L for objects of type Ti, a labeling is a mapping
L : Xi → L∪ {∗}, where “∗” denotes missing label. For any
x ∈ Xi, if L(x) = ∗, we say that x is unlabeled; otherwise,
L(x) is called the label of x. We use XLi and X ∗i to denote
the set of labeled objects and the set of unlabeled objects in
Xi, respectively. 2

Definition 6. Label-induced clustering. Given an HIN
G = (V,E), a set of labels L = {l1, ..., lk} for objects of
type Ti, and a labeling L, the label-induced clustering CL =
{C1, ..., Ck} is a partitioning of the set XLi into k clusters
such that Cj contains all and only those objects whose labels
are lj (i.e., Cj = {x ∈ XLi |L(x) = lj}). 2

Figure 2(e) shows four movie objects (M). If M1 and M3
are labeled“�”, M2 is labeled“F”, and M4 is unlabeled, then
there are two label-induced clusters (indicated by dotted
ovals in Figure 2(g)). Note that since M4 is unlabeled, it
does not belong to any cluster.

3. RELATED WORK
Classification on networked data has been well studied in

the past decade [7, 10, 5, 25]. A number of transductive clas-
sifiers have been proposed, especially on homogeneous infor-
mation networks [9, 3, 24, 1, 2, 19, 26] and specific HINs [20].
Other non-transductive classifiers on general HINs include
HINAL [17], HCC [6], etc.

There are also a few transductive classifiers for classifying
objects in general HINs. Three representatives of such algo-
rithms are GNetMine [4], HetPathMine [8] and Grempt [18].
As we have explained in Section 1, our goal is not to evalu-
ate the performance of individual transductive classifiers.
Rather, these classifiers serve as tools for us to analyze
the intrinsic properties of HINs in the context of transduc-
tive classification. Our coverage of transductive classifiers is
therefore not meant to be exhaustive.

GNetMine is among the first methods proposed for HIN
object classification. GNetMine first constructs a predic-
tive function f(lj |x) for each object x and object label lj .
It then derives an objective function that captures the as-
sumption that highly related objects should be given similar
labels. This is achieved by minimizing two values: (1) for
any two highly related objects xp and xq (as reflected by
their edge connections in the HIN), the difference between
their predictive values f(lj |xp) and f(lj |xq), and (2) for any
labeled object, xr, the difference between its predictive value
f(lj |xr) and its true label-induced value, which is 1 if xr’s
label is lj ; 0 otherwise. The predictive functions f(lj |x)’s



are trained by optimizing the objective function via an it-
erative method. Finally, GNetMine makes label predictions
based on the f(lj |x)’s.

Meta-path has been successfully used in various data min-
ing tasks. These include cluster analysis [14], recommender
systems [22], link prediction [23], and object similarity search
[21]. HetPathMine takes advantage of meta-path to perform
transductive classification. The basic idea is to first trans-
form an HIN into a number of TSSNs (e.g., in Figure 1, the
HIN is converted into three TSSNs). It also derives an objec-
tive function to minimize the two values mentioned in GNet-
Mine. However, the function aims to minimize the difference
between predictive values of any two highly related objects
in each TSSN instead of the original HIN. Weights are as-
signed to the TSSNs and the function makes a weighted com-
bination on these homogeneous networks. These weights are
learned by optimizing a cost function.

Grempt is a graph regularized transductive regression model.
The objective is to predict numerical values of objects in
an HIN with transductive learning. It shares similar ideas
with HetPathMine in (1) using meta-paths to derive TSSNs,
(2) formularizing objective function based on the TSSNs,
and (3) learning the weights of TSSNs in order to make
a weighted combination on them. Grempt can be easily
adapted to perform classification by considering the task as
a regression on the predictive values f(lj |x)’s. An inter-
esting aspect of Grempt is that it formulates the learning
problem as a convex optimization problem by applying a
constraint function with which optimal weights are learned.
This feature makes Grempt an effective method.

4. ANALYSIS
In this section we analyze the structural properties of

HINs and classification tasks. We first describe three clas-
sification tasks, which are used in our analysis. Then, we
explain the concepts of cohesiveness and connectedness, and
propose quantitative measures to capture these properties.

4.1 Classification tasks
DBLP3 is a bibliographic information network. We ex-

tracted a dataset from DBLP that contains 14,376 papers
(P), 20 publication venues (V), 14,475 authors (A) and 8,920
terms (T). These form the objects of the HIN. There are
three types of links, which are authorship (A-P), publication
(P-V), and keyword (P-T). The task is to classify authors
into their research areas. The label set is {database (DB),
data mining (DM), artificial intelligence (AI) and informa-
tion retrieval (IR) }. We use the set of meta-paths {APA,
APAPA, APVPA, APTPA} as suggested in [14].

Yago Movie is a movie related HIN extracted from Yago.
The dataset contains 1,465 movies (M), 4,019 actors (A),
1,093 directors (D) and 1,458 writers (W). There are three
types of links: M-A, M-D, and M-W. All of the extracted
movies can be classified into one of three genres: horror,
action and adventure. The task is to label movies into their
genres. We use the meta-path set {MAM, MDM, MWM,
MAMAM, MDMDM, MWMWM} as suggested in [17].

Freebase Movie is another movie related HIN extracted
from Freebase. It consists of 3,492 movies (M), 33,401 actors
(A), 2,502 directors (D) and 4,459 producers (P). There are
three types of links: M-A, M-D, and M-P. The task is again

3http://dblp.uni-trier.de/

Table 3: Similarity (NMI) of CL̂ and CNetClus

DBLP Yago Movie Freebase Movie
0.707 0.018 0.027

to label movies into their genres. The label set is {action,
adventure and crime}. We use the meta-path set {MAM,
MDM, MPM, MAMAM, MDMDM, MPMPM} [17].

4.2 Structural properties of an HIN
Transductive classification on networked data utilizes links

and paths to evaluate the relatedness of objects. Objects
that are highly related are assumed to share similar labels.
In a sense, links and paths are used to propagate labels from
labeled objects to unlabeled ones. Algorithms like GNet-
Mine use the HIN to propagate labels, while algorithms like
HetPathMine and Grempt use meta-paths to derive TSSNs
and propagate labels on those sub-networks. In any case,
the network structure (of the original HIN or of the derived
TSSNs) is an important factor of the effectiveness of trans-
ductive classifiers. In particular, all these transductive clas-
sifiers share the following intrinsic assumption:

Assumption 1. The Connectivity Assumption. The
structural connectivity between two objects (via links and
paths) is highly correlated to whether the objects would share
the same label.

In this section we address two interesting questions:
Question 1: Does the connectivity assumption generally

hold for HIN classification tasks?
Question 2: If not, how to measure the validity of the

connectivity assumption given a classification task?
To answer the first question, we conducted simple exper-

iments on a number of classification tasks. First, we define
true-labeling using the notations of Definition 5:

Definition 7. True-labeling. A labeling L̂ is a true-labeling
if ∀x ∈ Xi, L̂(x) is the true label (ground truth) of object x.

We put a caret ‘∧’ on a labeling L to indicate that it is
a true-labeling. For each of the three classification tasks
DBLP, Yago Movie and Freebase Movie, we find the true-
labeling L̂. We then cluster objects into the label-induced
clustering CL̂ (see Definition 6). Each cluster in CL̂ thus
contains all and only those objects of a given label.

Next, we apply NetClus [12], which is a clustering method
that clusters objects in an HIN based on network structure,
to our HINs. For each HIN, we compare the true-label-
induced clustering CL̂ (which is based solely on object la-
bels) with the clustering CNetClus , given by NetClus (which is
based solely on network structure). The similarity of the two
clusterings is measured by normalized mutual information
(NMI). Table 3 shows the results. We see that for DBLP,
the NMI is high, indicating that CL̂ and CNetClus are highly
similar. In other words, objects that are highly connected
(put in the same cluster by NetClus) tend to share the same
label (put in the same cluster by the true-label-induced clus-
tering). The connectivity assumption is thus strongly valid.
On the other hand, for Yago Movie and Freebase Movie, the
NMI’s are very low, indicating that the connectivity assump-
tion does not hold in those cases. This analysis is consistent
with the accuracies of the transductive classifiers when they
are applied to the three classification tasks (see Table 1).
Our analysis leads to the following conclusion:



Conclusion 1. The connectivity assumption does not al-
ways hold across HIN classification tasks. When it does,
transductive classifiers are very effective.

The next question we address is how the validity of the
connectivity assumption is evaluated. We propose to mea-
sure the correlation between structural connectivity of ob-
jects and their label similarity by the concepts of cohesive-
ness and connectedness. Intuitively, given a classification
task, an HIN is highly cohesive if strong connectivity occurs
mostly between objects of the same label; and that the HIN
is highly connected if objects of the same label exhibit strong
connectivity. The correlation between structural connectiv-
ity and label similarity is thus high if the HIN is highly co-
hesive and highly connected. In the following discussion, we
first assume that the true-labeling L̂ of a classification task
is known. Cohesiveness and connectedness are then defined
based on a true-labeling. We will discuss in Section 5.1 how
the two measures can be estimated when the true-labeling
is not known in practice.

4.3 Cohesiveness
Given an HIN G = (V,E), consider the task of classifying

objects x ∈ Xi of type Ti with the label set L = {l1, ..., lk}. A
transductive classifier propagates label from an object xu ∈
Xi to another object xv ∈ Xi. How much this propagation is
done depends on the structural connectivity (i.e., links and
paths) between xu and xv. For example, HetPathMine and
Grempt use meta-paths to derive TSSNs (see Figure 1), and
for each TSSN GP , which is derived from a meta-path P,
the structural connectivity between xu and xv is measured
using PathSim [13]:

s(xu, xv) =
2× |{pxu;xv : pxu;xv ` P}|

|{pxu;xu : pxu;xu ` P}|+ |{pxv;xv : pxv;xv ` P}|
.

Now, let us consider the true-label-induced clustering CL̂.
Figure 3 shows an example clustering with 2 clusters (ob-
jects with true label ‘#’ and those with true label ‘2’). An
edge, e.g., (x1,x2), is shown to indicate that two objects are
structurally connected (e.g., they are connected by meta-
paths). We assume that each edge shown is associated with
a weight, which reflects the strength of the connection (e.g.,
as measured using PathSim). We call Figure 3 a structural
connectivity graph.

Note that transductive classifiers using meta-paths (such
as HetPathMine and Grempt) measure the connectivity be-
tween two objects based on how well the objects are con-
nected by meta-paths. In this case, the structural connec-
tivity graph can be seen as a composition (union) of the
TSSNs derived from a given set of meta-paths. For example,
the structural connectivity graph of the movie HIN shown
in Figure 1(a) is the composition of the TSSNs shown in
Figures 1(c)-(e). In particular, the edge connecting M1 and
M2 in Figure 1(c) indicates that M1 and M2 are structurally
connected by a meta-path instance (M1-A1-M2). If M1 is
labeled, the label will be propagated to M2 via the structural
connection (M1,M2). We will discuss how an overall cohe-
siveness value is measured when the structural connectivity
graph is a composition of multiple TSSNs shortly. For the
moment, let us assume that there is only one connectivity
graph derived.

x1

x2

y1

Figure 3: A structural connectivity graph

As mentioned, an HIN is highly cohesive if strong connec-
tivity occurs mostly between objects of the same label. Re-
ferring to Figure 3, that means intra-cluster edges are many-
and-strong, while inter-cluster edges are few-and-weak. Fig-
ure 3 shows a very cohesive HIN because there is only one
edge (x1, y1) across the two clusters; most of the structural
connections are between objects of the same label. With this
intuition, we quantitatively define cohesiveness as follows.

Given two clusters C1 and C2 in a true-label-induced clus-
tering CL̂, with respect to a structural connectivity graph,
let h1 (h2) be the number of intra-cluster edges in C1 (C2)
with a sum of edge weights w1 (w2). Also, let h1,2 be the
number of inter-cluster edges between C1 and C2 with a sum
of edge weights w1,2. Define,

ρ(C1) =
h1

h1,2 + h1
, ρ(C2) =

h2

h1,2 + h2
, and (1)

η(C1) =
w1

w1,2 + w1
, η(C2) =

w2

w1,2 + w2
. (2)

ρ(C1) can be interpreted as, “Among all the edges that con-
nect some objects in C1, the fraction of which that connect
only objects in C1.” The other quantities can be interpreted
similarly. We further define the pairwise cluster cohesiveness
of C1 and C2:

Υ(C1, C2) = ρ(C1)× ρ(C2)× η(C1)× η(C2). (3)

For a classification task with k labels, a labeling induces
k clusters C1, ..., Ck. Let bi = |Ci|. Define the cluster cohe-
siveness of Ci by

ΥCi =
1

k − 1

∑
j 6=i

Υ(Ci, Cj). (4)

Let Υ = (ΥC1 , ...,ΥCk )T. We define the cohesiveness of an
HIN G as the weighted average of the cluster cohesiveness:

ΥG = βΥ, (5)

where β = ( b1∑k
i=1 bi

, b2∑k
i=1 bi

, ..., bk∑k
i=1 bi

).

If we use a set of meta-paths P1, ...,Pr in transductive
classification, the structural connectivity graph can be seen
as a composition of a number of TSSNs GPj (1 ≤ j ≤ r).
In this case, we evaluate the cohesiveness of each TSSN to
obtain ΥGPj

, assign a weight θj to each meta-path Pj , and

the overall cohesiveness is given by the weighted average:

ΥG =

r∑
j=1

θjΥGPj
. (6)

We assume that the weights θj ’s can be learned. Due to
space limitation, readers can refer to [8, 18, 17] for some
example methods for learning meta-path weights. In this
paper, we will rely on Grempt to learn the weights.



Table 4: Cohesiveness of HIN classification tasks
DBLP: ΥDBLP = 0.536

P APA APAPA APVPA APTPA

ΥGP 0.733 0.483 0.393 0.016

Yago: ΥYago = 0.209

P MAM MDM MWM MAMAM MDMDM MWMWM

ΥGP 0.106 0.313 0.262 0.065 0.303 0.214

Freebase: ΥFreebase = 0.185

P MAM MDM MPM MAMAM MDMDM MPMPM

ΥGP 0.107 0.326 0.174 0.086 0.346 0.123

We computed the cohesiveness values of the three HIN
classification tasks. Table 4 shows the results. We see
that DBLP has a much higher cohesiveness value (ΥDBLP

= 0.536) compared with Yago (ΥYago = 0.209) and Free-
base (ΥFreebase = 0.185). Again, this is consistent with our
analysis that the connectivity assumption is more valid with
DBLP than with Yago or Freebase. In Table 4, we also show
the cohesiveness values of the TSSNs derived from various
meta-paths. For example, for DBLP, the TSSN GAPA, de-
rived from the meta-path APA, is much more cohesive than
those given by other meta-paths. The interpretation is that
co-authorship (which is captured by the meta-path APA) oc-
curs mostly between authors of the same area. On the other
hand, the small cohesiveness value of GAPTPA indicates that
authors of different areas could share the same keywords in
their papers. For Yago Movie and Freebase Movie, the meta-
paths MDM and MDMDM derive the most cohesive TSSNs.
Yet, their cohesiveness values are much smaller than that of
APA, suggesting that it is more difficult for transductive
classification to achieve high accuracy in classifying movies.

4.4 Connectedness
We say that an HIN is highly connected if objects of

the same label exhibit strong connectivity. With respect to
transductive classification, this connectivity should facilitate
label propagation from one object to another of the same
class. To illustrate the idea, consider Figure 4, which shows
two object clusters (# and 2) in a structural connectivity
graph. We see that objects in the 2 cluster are strongly
connected in the sense that if an object in the cluster (say
y1) is labeled, the label can be propagated effectively to all
other objects in the same cluster. The # cluster, on the
other hand, is less connected. In particular, if we consider
only the intra-cluster edges of the # cluster, the # objects
form two isolated components. If object x1 in component 1
is labeled, the label cannot be propagated to the objects in
component 2 (e.g., x2) without going through the 2 cluster.
Label propagation among the # objects is thus less effective.

We measure the connectedness of a cluster C by the num-
ber of disconnected components (NDC (C)) in C if only
intra-cluster edges are considered. For example, in Figure 4,
the NDC of the # cluster is 2, while that of the 2 cluster
is 1. The larger NDC (C) is, the less is the connectedness
of cluster C. We normalize this measure to [0,1] and define
cluster connectedness, ΨC :

ΨC =

{
1 when NDC (C) = 1,

1− NDC(C)
b

when NDC (C) > 1,
(7)

where b is the number of objects in C.
If there are k clusters C1, ..., Ck, corresponding to k la-

bels of a classification task, let Ψ = (ΨC1 ,ΨC2 , ...,ΨCk )T.
We define the connectedness of an HIN G as the weighted

x2

y11

2

x1

Figure 4: An example illustrating connectedness

Table 5: Connectedness of HIN classification tasks
DBLP: ΨDBLP = 0.942

P APA APAPA APVPA APTPA

ΨGP 0.899 0.920 1.0 1.0

Yago: ΨYago = 0.393

P MAM MDM MWM MAMAM MDMDM MWMWM

ΨGP 0.567 0.253 0.281 0.690 0.253 0.285

Freebase: ΨFreebase = 0.584

P MAM MDM MPM MAMAM MDMDM MPMPM

ΨGP 0.970 0.282 0.350 0.992 0.282 0.382

average of the cluster connectedness:

ΨG = βΨ, (8)

where β = ( b1∑k
i=1 bi

, b2∑k
i=1 bi

, ..., bk∑k
i=1 bi

).

Similar to our discussion of cohesiveness, if we use meta-
paths P1, ...,Pr in transductive classification, we evaluate
ΨGPj

for each TSSN GPj . The overall connectedness of an

HIN G is the weighted average:

ΨG =

r∑
j=1

θjΨGPj
, (9)

where θj ’s are the meta-path weights.
Table 5 shows the connectedness values of our classifica-

tion tasks. The connectedness of the TSSN derived from
each meta-path considered is also shown. From the table,
we see that DBLP has a much higher connectedness value
(0.942) compared with Yago (0.393) and Freebase (0.584).
This means that authors of the same area mostly form a
single structurally connected component. The label of one
author can therefore be very effectively propagated to other
authors of the same area via meta-paths. Comparing the
four meta-paths used in DBLP, we see that the connected-
ness values of APVPA and APTPA are even higher than that
of APA. The interpretation is that authors of the same area
tend to attend the same conferences and use similar key-
words in their papers, but they do not necessarily co-author
with each other. For Yago Movie and Freebase Movie, we
see that MAM and MAMAM give relatively high connect-
edness values, indicating that movies of the same genre tend
to be starred by the same actors. However, the two movie
HINs are generally much less connected than DBLP.

Now, let us study how cohesiveness and connectedness are
correlated to classification accuracy. We apply Grempt on
the three classification tasks. For each one, we further ob-
tain the accuracy when only one meta-path (and its derived
TSSN) is used. Table 6 shows the results. For example, if
Grempt uses only the meta-path APA to derive the struc-
tural connectivity between objects in DBLP, the classifica-
tion accuracy is 42.8%; If all four meta-paths are considered,
then Grempt achieves an accuracy of 89.3%. Note that for
DBLP, the training set is much smaller (0.5%) than that of
Yago Movie and Freebase Movie (5%).

From Tables 4, 5, 6, we draw the following observations:



Table 6: Accuracies of applying Grempt to HINs
DBLP: 0.5% labeled objects, classification accuracy = 89.3%

P APA APAPA APVPA APTPA

acc. 42.8% 44.0% 91.1% 35.3%

Yago: 5% labeled objects, classification accuracy = 49.2%

P MAM MDM MWM MAMAM MDMDM MWMWM

acc. 41.5% 4.8% 8.8% 41.3% 4.8% 8.7%

Freebase: 5% labeled objects, classification accuracy = 65.4%

P MAM MDM MPM MAMAM MDMDM MPMPM

acc. 65.7% 6.1% 14.1% 66.0% 6.1% 14.4%

(1) The cohesiveness and connectedness of DBLP are both
much higher than those of Yago and Freebase, and the classi-
fication accuracy of DBLP (89.3%) is also much higher than
those of Yago (49.2%) and Freebase (65.4%).
(2) For DBLP, the meta-path APVPA gives the highest
accuracy (91.1%). This is because its TSSN is the most
connected (1.0) and is reasonably cohesive (0.393, which is
higher than any cohesiveness values in Yago or Freebase).
(3) The accuracy of the TSSN due to meta-path APTPA
(35.3%) is much lower than that of APVPA (91.1%) al-
though both of them are perfect in their connectedness scores
(1.0). The reason is that the cohesiveness value of APTPA
is extremely low (0.016). This indicates that, with APTPA,
although a label propagates well among objects within the
same cluster (high connectedness), the label also propagates
over to other clusters as well (very low cohesiveness).
(4) For Yago and Freebase, although MDM and MDMDM
give relatively cohesive TSSNs (Υ: 0.303-0.346) among all
meta-paths for the two tasks, the TSSNs are highly discon-
nected (Ψ: 0.253-0.282). This explains why the classification
accuracies using only MDM or MDMDM are so poor (6.1%).

From these observations, we can conclude that cohesive-
ness and connectedness are highly correlated with classifi-
cation accuracy. Also, both factors are important to the
successful application of transductive classifiers.

5. ESTIMATING Υ AND Ψ

We measure cohesiveness (ΥG) and connectedness (ΨG)

assuming that a true-labeling L̂ on the set of objects Xi

to be classified is available. The labeling induces a true-
label-induced clustering CL̂ based on which structural con-
nections are categorized into intra- and inter-cluster edges
in the structural connectivity graph. Cohesiveness and con-
nectedness are then defined based on such edges. In prac-
tice, however, such a true labeling is unavailable. In this
section we discuss how the two measures can be practically
estimated. We also discuss how the estimated values allow
us to design (1) a black-box tester, which indicates whether
transductive classification is generally successful for the clas-
sification task, and (2) an effective active learning algorithm.

We use a simple“bootstrapping”approach to estimate ΥG

and ΨG: Given a set of training data D (i.e., a set of objects
whose true labels are known), we first apply a classifier A
(e.g., Grempt) on G to obtain a labeling LA. LA partitions
the object set Xi into two sets: the set of labeled objects
XLi and the set of unlabeled objects X ∗i (see Definiton 5).
We first ignore the objects in X ∗i . Then, we obtain the
label-induced clustering, CLA , on the objects in XLi . We use
CLA as an approximation of the true-label-induced clustering
CL̂ and compute an approximated cohesiveness (denoted by
Υ′G) and an approximated connectedness (denoted by Ψ′G).
Since the label of any object x ∈ X ∗i cannot be deduced
by the classifier A, x must not be connected to any labeled

objects in D via any edges or paths (and hence labels cannot
be propagated to x). A larger set X ∗i thus indicates weaker
structural connectivity. Hence, we assess a penalty on Υ′G
and Ψ′G by a discount factor df = 1−|X ∗i |/|Xi|. That is, we
assign Υ′G ← df ·Υ′G and Ψ′G ← df ·Ψ′G.

5.1 Black-box tester
Given an HIN classification task, our black-box tester first

computes the estimated Υ′G and Ψ′G. These values are then
compared with certain standard references, which are HIN
classification tasks with known ΥG, ΨG and accuracy. The
tasks we studied in this paper, namely, DBLP, Yago Movie,
and Freebase Movie are examples of such references. Specif-
ically, if the estimated (Υ′G, Ψ′G) of a given task are both
strictly better than those of, say, DBLP (0.536, 0.942), we
have good confidence that transductive classifiers will be ef-
fective because DBLP is shown to be a “good” case of trans-
ductive classification. Conversely, if the estimated values are
worse than those of say Yago Movie, transductive classifica-
tion is unlikely to perform well for the task. The advantage
of the black-box tester over a direct evaluation of the accu-
racies of transductive classifiers is that the black-box tester
does not require a test set. This is particularly useful for
HINs where labeled data is generally hard to come by.

Algorithm 1 ALCC

Input: G, A, Xi, L, D, B, Ns.
Output: ∆D

1: ∆D ← ∅
2: Execute A on G with D to obtain a labeling LA

3: Compute Υ′G, Ψ′G based on LA

4: for k = 1 to B/Ns do
5: for (x ∈ Xi −D), (lj ∈ L) do
6: Get D+(x,j)

7: Execute A on G with D+(x,j); Compute Υ′G, Ψ′G
8: Compute QS(D+(x,j))

9: end for
10: Compute QS(D+(x,∗))
11: Sk ← Ns objects with largest QS(D+(x,∗))
12: D ← D ∪ Sk; ∆D ← ∆D ∪ Sk

13: end for
14: return ∆D

5.2 Active learning
Our method of estimating Υ′G and Ψ′G also leads to an

interesting approach to active learning in HIN classification.
Given a budget B, the problem of active learning is to select
a set ∆D of B objects in Xi−D to obtain their labels. These
objects (with their acquired labels) are then added to the
training set D. Active learning is about finding the best set
∆D so as to achieve the largest improvement in classification
accuracy with the expanded training set D ∪∆D.

Our active learning algorithm ALCC aims at finding the
B objects that give the largest improvement in Υ′G and Ψ′G.
Specifically, we define QS(D) = Υ′G×Ψ′G as the quality score,
where Υ′G and Ψ′G are computed w.r.t. a training set D.
When we estimate Υ′G and Ψ′G, a transductive classifier A is
applied. Generally, for each object x ∈ XLi , A determines a
label distribution (f1

x , f
2
x , ..., f

k
x ) for x, where each component

f j
x represents the confidence that x should be assigned the

label lj . Also, for each object x ∈ X ∗i , f j
x is given by the prior

probability f j
x = |{y ∈ D|L̂(y) = lj}|/|D|. We use D+(x,j)

to denote the expanded training set if object x were given



the label lj and is added to D. We measure the expected
quality score if object x is added to the training set by:

QS(D+(x,∗)) =

k∑
j=1

f j
x ×QS(D+(x,j)). (10)

ALCC picks Ns objects x’s that give the best expected
quality scores QS(D+(x,∗)) and adds these objects to D.
This process is repeated B/Ns times until the budget is ex-
hausted. Algorithm 1 shows the pseudo code of ALCC.

6. EXPERIMENTS
We conducted experiments to analyze our method of es-

timating Υ′G and Ψ′G. We discuss the effectiveness of the
black-box tester and present case studies of applying the
tester to HIN classification tasks. Finally, we evaluate the
effectiveness of our active learner ALCC and compare its
performance against other active learning methods.

6.1 Results
We apply our estimation method to DBLP, Yago Movie

and Freebase Movie. Figures 5(a) and (b) show the esti-
mated Υ′G and Ψ′G, respectively, as the training set D varies
from 5% to 100% of the object set Xi. Note that when |D|
= 100%, all the object labels are known and hence the esti-
mated values are the true values of ΥG and ΨG (which are
also shown in Tables 4 and 5). For reference, Figure 5(c)
shows the classification accuracy of Grempt when it is ap-
plied to the tasks under various sizes of the training set.

From Figure 5(c), we see that for DBLP, the classification
accuracy is very high. As a result, the labeling LA we used
in estimating Υ′G and Ψ′G is very close to the true labeling,
which in turn, induces a clustering that is highly similar to
the true-label-induced clustering CL̂. This results in very
accurate estimation of Υ′G and Ψ′G as reflected by the fairly
flat curves for DBLP in Figures 5(a) and (b); the estimated
values are close to the rightmost points (at |D| = 100%, the
case of true values).

The classification accuracies for Yago and Freebase are
quite low. For example, when |D| = 5%, their accuracies
are 49% and 65%, respectively. From Figure 5(b), we see
that the curves of the estimated Ψ′G for Yago and Freebase
are both very flat. This indicates that despite low classi-
fication accuracy, our estimation of connectedness remains
highly accurate. Cohesiveness, on the other hand, is harder
to accurately estimate when the classification accuracy is
low. For example, when |D| = 5%, the estimated Υ′Yago is
0.317 while the true value is 0.209.

We have conducted numerous experiments on HIN classi-
fication tasks. Generally, for those tasks on which transduc-
tive classifiers perform poorly (such as Yago Movie and Free-
base Movie), our estimated values Υ′G are over-estimates.
This over-estimation lessens as we get more training data.
For example, in Figure 5(a), we see that the curves for Yago
and Freebase generally go down as |D| increases towards
100%; All the estimated values are above the true values.

The phenomenon of overestimating Υ′G can be explained
by the illustration shown in Figure 6. A reason why trans-
ductive classification performs poorly on an HIN is that the
HIN exhibits poor cohesiveness. Figure 6(a) shows the struc-
tural connectivity graph of a non-cohesive HIN — there are
quite a few (4) inter-cluster connections relating objects of
different clusters (labels). Given a small training set (il-

lustrated as filled objects in Figure 6(b)), our estimation
method applies a transductive classifier to propagate labels.
Because of the high number of inter-cluster connections, la-
bels from one cluster can be easily propagated to objects
of another cluster, resulting in mis-labeling. (This is il-
lustrated in Figure 6(c) where object y4 is mislabeled  .)
The resulting inferred clustering structure is shown in Fig-
ure 6(d). Since the HIN is not cohesive, intra-cluster connec-
tions could be weak. The fact that object y4 is mislabeled by
the classifier indicates it is not strongly connected to other
objects of the 2 label. The number of inter-cluster connec-
tions found in the inferred clustering (2) (Figure 6(d)) is thus
smaller than that of the true clustering (4) (Figure 6(a)).
With fewer inter-cluster connections, the cohesiveness given
by the inferred clustering is thus overestimated.

Recall that our black-box tester first estimates Υ′G and
Ψ′G for a given HIN G, and then compares the estimates
against the (ΥG, ΨG) values of standard references. The
tester can make one of two recommendations: Case 1: (Υ′G,
Ψ′G) are strictly better than the values of a “good case” such
as DBLP. In this case, the tester recommends transductive
classification be applied to the task. Since the tester esti-
mates that G is highly cohesive and highly connected (even
better than a “good case” of standard references), from our
previous discussion, we know that the estimated (Υ′G, Ψ′G)
should be highly accurate. The recommendation is there-
fore reliable. Case 2: (Υ′G, Ψ′G) are strictly worse than the
values of a “bad case” such as Yago Movie. In this case,
the tester does not recommend transductive classification
be applied. Since the estimated values are worse than a
“bad case”, from our discussion, the estimated (Υ′G, Ψ′G) are
likely to be overestimates. That is, the true values should be
even worse. The recommendation of the tester (of not using
transductive classification) is therefore reliable as well.4

6.2 Case study
We applied our estimator to a number of other HIN clas-

sification tasks. In this section we further present two repre-
sentative cases. We will also discuss applying the black-box
tester to these cases to make a recommendation. First, let
us describe the two classification tasks.
[TV] We extracted an HIN from Freebase on objects that
are related to TV program series. The HIN consists of 2,913
series (S), 652 directors (D), 685 writer (W), and 151 TV
programs (P). The schematic graph consists of three types
of links, namely, series-director, series-program, and series-
writer. All the series objects extracted are of one of the
three genres: comedy-drama, soap opera, and police procedu-
ral. The classification task is to classify series objects into
their genres. We consider 6 meta-paths: {SDS, SWS, SPS,
SDSDS, SWSWS, SPSPS}.
[Game] The other HIN we extracted from Freebase is re-
lated to video games. The HIN consists of 4,095 games
(G), 1,578 publishers (P), 2,043 developers (D) and 197 de-
signers (S). The schematic graph consists of three types of
links: game-publisher, game-developer, and game-designer.
All the game objects extracted are of one of the three genres:
action, adventure, and strategy. The classification task is to
classify games into their genres. We consider 6 meta-paths:
{GPG, GDG, GSG, GPGPG, GDGDG, GSGSG}.
4For cases in which (Υ′G, Ψ′G) are neither strictly better than
some good cases nor strictly worse than some bad cases, the
tester does not make a recommendation.
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Figure 5: Estimating cohesiveness, connectedness, and classification accuracy of 3 HIN classification tasks
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Figure 6: Overestimation of Υ′G for a non-cohesive HIN

We first apply our estimator to TV with a training set
D of 15% of all the program series objects (S). The esti-
mator returns (Υ′TV = 0.749, Ψ′TV = 0.836). These values
show that TV is highly cohesive and highly connected for
the classification task. Assuming that we have only DBLP,
Yago Movie, and Freebase Movie as standard references. We
compare (Υ′TV , Ψ′TV ) against those of the references. We
found that (1) TV is not strictly worse than the bad cases:
Yago Movie (0.209, 0.393) or Freebase Movie (0.185, 0.584),
and (2) TV is comparable to but not strictly better than
the good case: DBLP (0.536, 0.942). In fact, the estima-
tor indicates that TV is more cohesive than DBLP but not
as connected. For TV, although the black-box tester does
not give a recommendation, we have high confidence that
transductive classification will be successful because of the
high estimated values. We then obtain the true labels of all
the series objects S. We apply Grempt to classify the series
objects (with a 15% training set) and compare the labels
predicted by Grempt against the true labels. We found that
the classification accuracy is 94.3%, showing that transduc-
tive classification is indeed highly accurate for TV. Further-
more, with the true labels, we compute the true cohesiveness
and connectedness of TV, which are (0.887, 0.889). Our es-
timated values, (0.749, 0.836), are quite close to the true
values. With this analysis, we add [TV: (0.887, 0.889)] as a
good case to our set of standard references.

Next, we apply our estimator to Game with a training set
D of 15% of all game objects (G). The estimator returns
(Υ′Game = 0.342, Ψ′Game = 0.254). Although the estimated
values are not strictly worse than those of Yago Movie or
Freebase Movie, the small values indicate that Game is likely
a “bad” case of transductive classification. Again, we obtain
the true labels of all game objects and found that the accu-
racy of applying Grempt to Game is only 34.2%. We further
determine the true cohesiveness and connectedness values of
Game, which are (ΥGame = 0.250, ΨGame = 0.297). Note
that Υ′Game > ΥGame . This is consistent with our discus-
sion that for “bad” cases, the estimated cohesiveness values
are generally overestimates. We add [Game: (0.250, 0.297)]
as a bad case to our set of standard references. As more

HIN tasks are added to the references, the black-box tester
accumulates more examples to refine its recommendations.

6.3 Active learning
In this section we evaluate our active learning algorithm

ALCC. We compare ALCC against three other methods:
Random: Given a budget B and an initial training set D,
Random randomly picks B objects in Xi −D.
Uncertainty Sampling (US): Recall that for each object
x ∈ Xi − D, a classification algorithm assigns to it a label
distribution (f1

x , f
2
x , ..., f

k
x ), where f j

x is the likelihood that
object x is of label lj (see Section 5.2). US evaluates the en-
tropy of each object’s label distribution and picks B objects
whose entropies are the largest.
Active Learning based on Global Entropy (ALGE):
Recall that ALCC computes a quality score QS(D) = Υ′G×
Ψ′G of an HIN G given a training set D, and essentially
picks B objects that can best improve the score. In order to
evaluate the importance of cohesiveness and connectedness
in active learning, we consider an alternative definition of
QS. Specially, we define QS(D) = the average entropy of
the label distributions of all the objects x ∈ Xi − D. We
modify ALCC with the above definition of QS and call the
resulting algorithm ALGE.

We execute the four active learning algorithms on a num-
ber of HIN classification tasks. As representative results,
Figure 7 shows the algorithms’ performance when they are
applied to Yago Movie (Figure 7(a)) and Game (Figure 7(b)).
For both HINs, the initial training set D is set to 10% of the
object set. We vary the budget B from 0 to 10%. For ALCC
and ALGE, Ns is set to 2. We use Grempt as the classifica-
tion algorithm and report its accuracy after D is expanded
with the objects picked by the active learning algorithms.

From Figure 7, we see that as the budget B increases,
we get more labeled objects in the training set and classifi-
cation accuracy increases. Comparing the four algorithms,
Random gives the worst performance. US, which is based
on local per-object entropy, generally performs worse than
ALGE, which considers the overall entropy among all the
objects. This is particularly true for the Game HIN. ALCC,
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Figure 7: Active learner comparison

which employs cohesiveness and connectedness measures,
gives the best performance among the four. For example,
when B = 10%, for Yago Movie, ALCC improves the ac-
curacy by +7.4% (from 50.8% to 58.2%). This compares
favorably against Random (+3.5%), US (+6%), and ALGE
(+5.8%). For Game, although ALCC only registers a marginal
advantage over ALGE, its improvement in accuracy (+15%)
is significantly better than that of Random (+6.3%) and US
(+10%). Our experimental results show that cohesiveness
and connectedness are useful measures in the design of an
active learner.

7. CONCLUSIONS
In this paper we studied transductive classification of ob-

jects in a heterogenous information network. Through a
cross-sectional study and a longitudinal study, we found
that transductive classifiers give very similar performance
for a given HIN classification task, but the performance of
a classifier varies widely across different tasks. We pro-
posed to study the structural properties of HINs in order
to understand the intrinsic factors that determine the suc-
cess of transductive classification. Through analysis, we con-
jectured that the validity of the connectivity assumption is
strongly affected by two structural properties, namely, cohe-
siveness and connectedness. We proposed quantitative mea-
sures for these two properties and put forward a method to
estimate their values. We conducted experiments to evalu-
ate the reliability of the estimation. We showed how these
estimates can be utilized to build a black-box tester that
provides recommendation on whether an HIN classification
task should be tackled by transductive classification. Fur-
thermore, we designed an active learning algorithm ALCC,
which is based on the estimated values. We conducted case
studies to show that the black-box tester gives reliable rec-
ommendations and our experiments show that ALCC out-
performs other active learning algorithms.
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