
1

Entity-BasedQuery Recommendation for Long-TailQueries

ZHIPENG HUANG, University of Hong Kong

BOGDAN CAUTIS, University of Paris-Sud, France

REYNOLD CHENG, University of Hong Kong

YUDIAN ZHENG, University of Hong Kong

NIKOS MAMOULIS, University of Ioannina, Greece

JING YAN, University of Hong Kong

Query recommendation, which suggests related queries to search engine users, has attracted a lot of

attention in recent years. Most of the existing solutions, which perform analysis of users’ search history (or

query logs), are often insufficient for long-tail queries that rarely appear in query logs. To handle such queries,

we study the use of entities found in queries to provide recommendations. Specifically, we extract entities

from a query, and use these entities to explore new ones by consulting an information source. The discovered

entities are then used to suggest new queries to the user. In this paper, we examine two information sources:

(1) a knowledge base (or KB), such as YAGO and Freebase; and (2) a click log, which contains the URLs accessed

by a query user. We study how to use these sources to find new entities useful for query recommendation. We

further study a hybrid framework that integrates different query recommendation methods effectively. As

shown in the experiments, our proposed approaches provide better recommendations than existing solutions

for long-tail queries. In addition, our query recommendation process takes less than 100ms to complete. Thus,

our solution is suitable for providing online query recommendation services for search engines.

ACM Reference Format:
Zhipeng Huang, Bogdan Cautis, Reynold Cheng, Yudian Zheng, Nikos Mamoulis, and Jing Yan. 2018. Entity-

Based Query Recommendation for Long-Tail Queries. ACM Trans. Knowl. Discov. Data. 1, 1, Article 1 (Janu-

ary 2018), 23 pages. https://doi.org/10.1145/3233186

1 INTRODUCTION

Keyword search, which allows a user to express his/her query with keywords, has become a

fundamental tool in Web search engines. In the last decade, significant efforts have been made to

improve its accuracy [15]. Recently, the topic of query recommendation, which is closely related to

keyword search, has attracted a lot of interest from both the research and industry communities.

Besides displaying the “classic ten blue result links” from his/her keyword search, a search engine

may suggest alternative formulations of the query, which can be more articulated, focused, and

interesting to the user. Providing accurate query recommendations while the user is typing his/her

query, almost instantaneously, can be extremely beneficial, in terms of enhancing the user experience

and providing guidance to the retrieval process [16].

Authors’ addresses: Zhipeng Huang, University of Hong Kong, Hong Kong, zphuang@cs.hku.hk; Bogdan Cautis, University

of Paris-Sud, Orsay, France, bogdan.cautis@u-psud.fr; Reynold Cheng, University of Hong Kong, Hong Kong, ckcheng@

cs.hku.hk; Yudian Zheng, University of Hong Kong, Hong Kong, ydzheng2@cs.hku.hk; Nikos Mamoulis, University of

Ioannina, Ioannina, Greece, nikos@cs.uoi.gr; Jing Yan, University of Hong Kong, Hong Kong, jyan@cs.hku.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1556-4681/2018/1-ART1 $15.00

https://doi.org/10.1145/3233186

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3233186
https://doi.org/10.1145/3233186

1:2 Zhipeng Huang et al.

Existing works on query recommendation often involve the analysis of query logs, which contain

a variety of information about previous keyword search activities (e.g., the query contents, the

webpages selected by users, and click-through rates) [1, 2, 45]. These query logs are often used to

construct a graph representation, which models relationships between queries, terms, webpages,

users, etc.; often, an importance weight for each edge is also computed. For example, in [6], the

weight between two query nodes is proportional to the number of times the two queries appear in

the same session. While these works have been shown to be useful for query recommendation, most

of them do not focus on long-tail queries, i.e., queries that rarely appear in query logs. However, long-

tail queries exist in abundance, and they cannot be ignored. In our experiments, 32% of 20 million

queries appear three or fewer times in an extended query log from a commercial search engine.

Due to the low occurrence frequency of long-tail queries, existing query recommendation solutions

are ineffective on them. We have tested two well-known query recommendation algorithms [6, 8]

on long-tail queries (see Section 9) and found that they are far from accurate, reflecting that there

is room for improvement in the recommendation process.

In this paper, we propose a framework for using the entities within a query to provide query

recommendations. Our solution consists of three steps: 1) extract entities from the query, 2) use

them to find new and related entities with the help of other information sources, and 3) based on

the discovered entities, suggest alternative and relevant queries to the user. To illustrate, let us

consider the following query.

q1: akira kurosawa influence george lucas

In the first step, through an entity-linking process [44], Akira_Kurosawa and George_Lucas are

the entities identified in the query. Then, we need to discover other entities that are conceptually

related to them, using other information sources.

We study the use of two common information sources for finding new entities related to a query.

• KB A knowledge base, such as YAGO [41] and Freebase [7], is a rich information source that

describes the intricate relationships among real-world entities. We develop a solution, called KB-

QRec, to find out useful entity relationships from a KB. The main idea of KB-QRec is to learn

the meta paths [29], which define semantic relationships between entities. Then, these meta paths

are used to discover related entities in a KB. For example, Hidden_Fortress is a film directed by

Akira_Kurosawa, and Star_Wars is one directed by George_Lucas. The relationships among these

entities can be expressed by a meta path:

P1 : director
directed
−−−−−−−→ f ilm,

where director, film, and directed are the types of nodes and links, respectively, in a KB. Correspond-

ingly, the meta path instance Akira_Kurosawa

directed
−−−−−−−→ Hidden_Fortress exists in the KB. The meta

path P1 can also describe the relationship between entities George_Lucas and Star_Wars. KB-QRec

uses the two discovered entities to suggest for q1 the following queries:

q2: hidden fortress star wars comparison

• Click logs This information source contains URLs that a user clicked after issuing a query. Our

intuition is that given two related entities e1 and e2, a user tends to browse the same URLs after

issuing queries containing e1 and e2. For example, if entity Star_Wars shares many clicked URLs

with George_Lucas, then the following query can be recommended:

q3: george lucas star wars

We have developed a solution called D-QRec to retrieve entity relationships from click logs.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Entity-BasedQuery Recommendation for Long-Tail Queries 1:3

Challenges and solutions. Given the entities found in an input query (e.g., Akira_Kurosawa

andGeorge_Lucas inq1), how do we find other entities in a KB? As discussed before,meta paths, such

as P1, can be used in this process. However, there can be a huge number of meta paths connecting

two KB nodes [29], hence we need to identify the effective ones and to learn the corresponding

weights based on the query log.

As for click logs, how can we assess the degree of relevance between two entities, based on their

click information in the query log? Intuitively, the more overlap of clicked URLs we have between

the two entities, the more related they are. Using this observation, we define a relevance based

score as the conditional transition probability between the entities.

After some related entities have been discovered for the input query, we need to perform fast

query recommendation based on them (e.g., q2 or q3 in our example). Basically, we achieve this

using a cache structure for personalized random walk and also a paralled graph processing platform

called PowerWalk. We test our solutions on real-world query datasets, and find that KB-QRec and

D-QRec perform better than existing approaches on long-tail queries bearing entities that can be

identified.

A problem common to KB-QRec and D-QRec is that they do not work very well for non-long-tail

queries, or those whose entities are not identifiable. In view of this issue, we have developed a

hybrid framework that integrates different approaches (e.g., QFG [6] and KB-QRec). This solution

prioritizes on different methods, such that a method is used only if the ones having higher priority

cannot provide sufficient recommendations. Our experiments show that this approach yields better

recommendation quality than another scheme that applies linear aggregation of suggestions by the

different approaches.

The rest of our paper is organized as follows. We discuss related work in Section 2. Some

preliminary information is given in Section 3.We introduce our entity-based query recommendation

framework in Section 4. We present KB-QRec in Section 5 and D-QRec in Section 6. We then

introduce our integrated solution in Section 7. We describe our efficient implementation in Section

8. Our experimental results are discussed in Section 9. We conclude in Section 10.

2 RELATEDWORK

Query auto-completion and query recommendation are two of the most important features in

search engines today, and could be seen as facets of the same paradigm: providing accurate query

reformulation suggestions on-the-fly, at each keystroke. In query auto-completion, a list of the

most relevant continuations to the input (in the typing) query is to be shown for selection. In query

recommendation, the suggestion goes one step further by proposing alternative queries, which are

not necessarily completions of the input ones. In this section, we review related work on query

recommendation. Auto-completion generally relies on prefix-based computations and trie-like data

structures; for details, see [3, 10, 38, 39].

2.1 Graph-based Approaches

There is a rich body of research on mining query terms, click-through data, and logical user

sessions in order to extract useful patterns and similarity measures – be it syntactical, semantical, or

behavioral – for alternative query formulations in Web search engines. At their core, the techniques

boil down to computing similarity between query instances, often using as an intermediary various

graphs involving queries, pages, users, and terms.

Initial approaches rely on clustering for similar queries [1, 45], where proximity depends on the

query-click bipartite graph or on query representations aggregating the term-vectors of clicked

pages. The short paper of [47] was among the first to suggest mining from query logs the sequential

search behavior, and to combine it with content-based similarity. In [2], the authors introduce the

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 Zhipeng Huang et al.

concept of cover-graph, a bipartite graph between queries and Web pages, where links indicate

corresponding clicks. In [9], another method using search short cuts was proposed.

The studies of [6, 8] present similar graph-based methods, in which the flow patterns are exploited

for query recommendation, using the query-flow graph and the term-query-flow graph, respectively.

The former technique builds a graph over queries, in which links model the transition likelihood in

query sessions. The latter technique extends this idea by adding to the graph also the query terms;

this makes recommendation possible even for queries that may not explicitly appear in the graph

(i.e., they are not “covered”). In both works, the selection of the top-k query recommendations

is done by performing random walks in the graph. For example, given a query which contains

t terms, [8] would compute the random walk with restart for each of the term, and sum up the

PPR vectors to generate top-k recommended queries. In [22], the authors consider location-aware

query recommendation setting. In [11], the authors rely on the so called click-through bipartite

graph but also consider the context of the query and its immediately preceding queries, in order to

better identify suggestions at query time via suffix-trees. Similar in spirit to our D-QRec’s way of

exploiting query logs, other works, such as [25, 35], exploit implicit feedback with click-through

bipartite graphs, yet without taking into account semantic entities.

2.2 Machine Learning-based Approaches

These approaches do not rely on graphs to find clusters of queries or to search for similar ones. For

instance, [18] uses association rules to model the relationships between queries. In [40], the authors

consider a deep neural model to generate query suggestions, in the style of machine translation

approaches, showing that synthesizing suggestions for rare queries is possible. Similar in style, [24]

learns to perform automatic query modifications towards suggestions. Semi-supervised learning-to-

rank approaches are considered in [32, 37], by training rankers on pairwise query features. In [20],

the authors rely on a Markov model (QVMM) and build a suffix-tree to model query sequences.

2.3 Semantics-based Approaches

Very few works have considered the integration of semantics, in its most common and rich form,

the one of a knowledge base (KB), as the means for a deeper understanding of the query intents

and of the relationships that may support suggestions. Among them, [43] proposed to enhance

the query-flow graph with templates over a hierarchy of entity types (the sort of hierarchy that

Wordnet or the isA projection of a knowledge base could provide). In [36], the authors considered

the mining, ranking, and recommending of so called “entity aspects” (query segments that represent

subtopics) in keyword search. Their approach combines several metrics and methods for computing

similarity or compatibility, including semantics via word2vec [30] descriptions.

The above works only make use of limited semantic-relatedness measures, such as the entity type

hierarchy or word2vec. Our thesis is that better results can be obtained by a broader exploration of

the relationships between entities, through the use of other information sources such as KBs and

click logs. Using the direct or composite relationships among entities, as a key ingredient in the

process of reasoning for relatedness and of building suggestions, introduces new opportunities

for providing less obvious suggestions. We address new technical challenges, such as handling

the problem of exploring and filtering an extremely large number of meta paths. A preliminary

version of our work can be found in [21], where we studied the use of KBs to perform query

recommendation. In this paper, we generalize this idea, by proposing a general solution framework

that provides query recommendations based on entities found in queries. Under this framework,

we also study D-QRec, which uses click information to retrieve entity relationship information.

We further propose a hybrid solution, which can integrate different recommendation methods. Our

new experiments demonstrate improved results, compared to those presented in [21].

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Entity-BasedQuery Recommendation for Long-Tail Queries 1:5

The problem we consider is related, but does not reduce to, entity recommendation in Web

search. [33] introduces the scenario of entity recommendations for Web queries, aiming at judging

what entities is the input query about (a kind of linking to implicit entities). They propose a

technique having at its core a tripartite-graph, linking queries to URLs or entities. In [4], the entity

recommendation task is solved via a learning-to-rank approach, using diverse features such as

those from textual corpora (e.g., entity co-occurrence), graph-theoretical ones from semantic triples,

etc. While not focusing on how to recommended queries to users, the techniques of these two

studies could be seen as possible starting points for other methods covering the first two steps of

our proposed framework, complementary to the two methods we consider.

Finally, entity linking, i.e., the problem of identifying entities from a KB in a given piece of text,

is also a well-known problem for which most recent efforts focused on how to optimize the latency

of generic approaches, which have good precision; see [5] and the references therein. We assume

similar overhead in our query processing pipeline as in [5].

2.4 Long-tailQuery Recommendation

Besides accuracy, two significant challenges for all these works are efficiency and coverage. Regarding

efficiency, naturally, query recommendation in a Web search engine should trigger within typing

latency, in order to disrupt as little as possible the user experience. This is why, in many of

the aforementioned works, a lot of effort has been put into smart indexing and pre-fetching

policies, the approximation of random walks, etc. Regarding coverage, which captures how often

the recommendation engine can provide meaningful query suggestions, existing techniques still

underperform on the so called long-tail queries, which are not very frequent and have scarce

support for recommendations. Indeed, long-tail queries are generally handled poorly by the state-

of-the-art approaches, such as the ones of [6, 8], simply because little to no evidence is available in

the historical records for them.

The importance of rare queries is emphasized in [16], arguing that search engines are less

effective on long-tail queries, and that reformulations are much more common for them.

3 PRELIMINARIES

We first revisit query logs in keyword search in Section 3.1, and the well-established notion of query-

flow graph in Section 3.2, which conceptually captures the behavior of users when reformulating

queries. Then, we introduce necessary terminology and concepts for the knowledge base and the

meta paths therein in Section 3.3.

3.1 Query logs

A typical model for the log of a keyword search engine is a set of records (qi ,ui , ti ,Ci), where qi
is a query submitted by user ui at time ti , and Ci is the set of clicked URLs for qi , before issuing
another query.

Following common practice, we can partition a query log into task-oriented sessions, where each

session is a contiguous sequence of query records from the same user, assuming a fixed maximal

separation time tθ (a typical tθ value is 30 minutes). Within the same session, we can assume that

the user’s search intent remains unchanged, even though he may do several query reformulations.

3.2 Query-flow graph

One of the most studied directions for the problem of top-k query recommendation we consider in

this paper relies on the extraction of behavioral patterns in query reformulation, from extensive

collections of historical search and click records (the query logs). The query-flow graph (QFG

in short) [6] is a graph representation of query logs, capturing the “flow” between query units.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 Zhipeng Huang et al.

“hidden fortress”

“george lucas”

“akira kurosawa”

0.7

0.3

0.4

0.6

Fig. 1. Illustrating a toy QFG.

Intuitively, a QFG is a directed graph of queries, in which an edge (qi ,qj) with weightw indicates

that the query qj follows query qi in the same session with probabilityw in the query log.

More formally, the QFG is defined as a directed graph Gqf = (Q,E,W), where Q is the set of

nodes, with each node representing a unique query in the log, E ⊆ Q ×Q is the set of edges, andW
is a weighting function assigning a weightw(qi ,qj) to each edge (qi ,qj) ∈ E. In Gqf , two queries

qi and qj are connected if and only if there exists a session in the query log where qj follows qi .
For example, Figure 1 illustrates a toy QFG with three queries. Assuming that the input query

q =“hidden fortress”, the top recommendation according to this QFG should be “george lucas” as it

is the out-neighbor with the maximum weight.

The main application of QFG is to perform query recommendation. Given a graph Gqf =

(Q,E,W) and a query q ∈ Q , the top-k recommendations for q could be obtained in this graph

by some kind of proximity-based top-k node retrieval, be it neighborhood-based (e.g., the queries

q′ to which q connects with the largest weights w(q,q′)) or path-based (e.g., by Personalized

PageRank w.r.t. node q). No matter what kind of proximity we choose, QFG can only perform well

on those popular queries, which appear very frequently in the query log. For long-tail queries,

about which the query log has little information, as shown in our experiments, QFG has very

poor recommendation performance. This is why we resort to knowledge bases to address long-tail

queries.

3.3 Knowledge base and meta paths

A knowledge base, or Heterogeneous Information Network (HIN) [13], such as YAGO [28] or

DBPedia [46], can be viewed as a set of facts (a.k.a. triples), where each fact describes a relationship

between two entities. Different models for knowledge bases have been studied in the literature.

One of the most common formalizations of knowledge relies on the RDF model
1
, which models

triples (s,p,o) to denote a subject, property, and respectively, object.

Alternatively, property graphs model this type of information by labeled edges and nodes, with

labels indicating the edge types and node classes, respectively; additionally, in this model, nodes

can carry various property-value pairs.

Independently of syntactic formalization flavors, for the purposes of this work, given a set of

entity types (or classes) L and a set of link types (or relationships) R, we see a knowledge base

simply as a directed graph K = (VE ,EEE) with an entity type mapping function ϕ : VE → 2
L
and

a relationship mapping function ψ : EEE → R. Each node in K represents an entity e ∈ VE , and
belongs to a set of entity types ϕ(v) ⊆ 2

L
; this can be seen as a form of resource typing. Each link

1
https://www.w3.org/RDF

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Entity-BasedQuery Recommendation for Long-Tail Queries 1:7

Table 1. List of symbols.

Symbol Description

q a query

Q the set of queries in our query log

e an entity

θ (q) the set of entities within query q

Gqf a QFG

GEQ the bipartite graph of entities and queries

GDE the bipartite graph of documents and entities

Rec(q) the recommended queries for q

Step 1. Entity Linking Step 2. Entity Expansion

e3

e5

e1
Entity Linking Tool

(e.g., Dexter2)

<Hidden_Fortress>

<Star_Wars>

Recommendation:

Step 3. Query Searching

e3

e5

q2

q2 = hidden fortress star

wars comparison

e2 = <George_Lucas>

e2

Input query q1:

 akira kurosawa influences
 george lucas

e1 = <Akira_Kurosawa>

e4 <Japan>

q3
e4

q3 = george lucas

star wars
q4 q4 = japan influence

star wars

Fig. 2. Example for the three steps in our entity-based query recommendation framework.

e ∈ EEE has a relationship labelψ (e) ∈ R. For example, entity e =“George_Lucas” may have two

entity types t1 =film maker and t2 =producer, so ϕ(e) = {t1, t2}.
In a knowledge base K , two entities e1, e2 may be connected via multiple edges and paths.

Conceptually, each of these paths represents a specific direct or composite relationship between

them. We model all these direct and composite relationships by meta paths [42]. Specifically, a

meta path P in the knowledge base is a sequence of entity types t1, . . . , tn connected by link types

l1, . . . , ln−1, and can be represented as follows:

P = t1
l1
−→ t2 . . . tn−1

ln−1
−−−→ tn .

For example, a meta pathperson
marryTo
−−−−−−−→ person represents the direct relationship between entities

of the type person.

4 ENTITY-BASED QUERY RECOMMENDATION FRAMEWORK

In this section, we give an overview of our framework for entity-based query recommendation.

The most commonly used notations are summarized in Table 1.

Given a query q, the framework follows three main steps to generate recommendations for q, as
illustrated by our running example in Figure 2:

Step 1 – entity linking. To extract entities from the input query q, we first need to perform entity

linking on q, and get the set of entities θ (q) contained in it. For example in Figure 2, given an input

query q1 = “akira kurosawa influences george lucas”, we perform entity linking on it and get the

entities e1 and e2.
After performing entity linking on all the queries in the query log, we can obtain a bipartite graph

GEQ of entities and queries, with each edge (ei ,qj) meaning that ei ∈ θ (qj). We further associate

to each linked entity-query pair (e,q) a probability tEQ(e,q) in (0, 1), which is proportional to the

frequency of q in the query log divided by the total frequency of all the queries containing e .

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 Zhipeng Huang et al.

Algorithm 1: Computing tEQ
Input: query-flow graph Gqf , knowledge base K
Output: tEQ

1 for q ∈ Q do
2 θ (q) ← entityLinkinд(K ,q)

3 for q ∈ Q do
4 for e ∈ θ (q) do
5 tEQ(e,q) = f (q)/

∑
q′ | e ∈θ (q′) f (q

′)

6 return tEQ

Algorithm 1 outlines how we compute tEQ . For each query q ∈ Q , we do entity linking on it

(line 2), and denote by θ (q) the set of entities found in q. Note that, by definition, each entity e
detected in a query instance has also a corresponding entity node in the knowledge base K . Then
we compute tEQ(e,q) by our definition (lines 3-5).

As our work does not focus on the entity linking problem, we assume here an off-the-shelf entity

linking tool is used, as a black box (e.g., Dexter 2.0 [44]). Although any modern entity linking

tool can do the job, we stress that the quality of this step directly impacts the performance of our

entity-based recommendations.

Step 2 – entity expansion. Once the entities θ (q) have been identified, our next step is to expand

this semantic footprint of the query and find other related entities. This is where we resort to

additional information sources. While various alternatives may be envisioned, in this paper, we

consider two such information sources, whose role is to capture relevance between entities. In

Section 5, we present an entity-based query recommendation method, KB-QRec, which finds related

entities in a knowledge base. In Section 6, we then introduce a second method, called D-QRec, which

relies on query logs and click information to discover click-induced relevance between entities.

Step 3 – query searching. Last but not least, we need to figure out the most relevant queries

w.r.t. the set of related entities obtained at the previous step. One natural approach is to rely on

Personalized PageRank (PPR) computations from these entities, in an entity-query graph. Specifically,

for each related entity e , we can perform a PPR w.r.t. e on Gqf ∪GEQ , where Gqf is a query-flow

graph, as mentioned in Section 3.2, and GEQ is the bipartite graph mentioned in Step 1. Then, we

can sum up the PPR vectors to obtain the aggregated per-query result, and the k queries with the

largest aggregated PPR probabilities should be our recommendations.

In our example in Figure 2, we perform PPR computations starting from e3, e4, and e5, respectively.
Finally, we sum up the PPR vectors over queries to get the top-3 recommendations, i.e., q2 − q4.
Note that our entity-based query recommendation framework only considers the entities θ (q),

without taking into account the context of these entities. In other words, the recommendation results

are the same for all queries containing the same entities, i.e., Rec(qi) = Rec(qj) if θ (qi) = θ (qj).
While this interpretation already proves to be effective for long-tail queries containing entities, it

may also harm the results in certain cases. We thus advocate for a best-of-both-worlds approach in

Section 7, where we consider combining our entity-based methods with other techniques, which

do take into account the query context, such as QFG or TQGraph.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Entity-BasedQuery Recommendation for Long-Tail Queries 1:9

5 KB-QREC: KNOWLEDGE-AWARE ENTITY-BASED QUERY RECOMMENDATION

In this section, we introduce our knowledge-aware query recommendation approach, denoted in

short as KB-QRec, which makes use of the rich information in a knowledge base to model the

relevance among entities.

We first give an overview of KB-QRec in Section 5.1, then in Section 5.2 we describe the details

for building the necessary data structure offline, from the input query logs and the knowledge base.

Finally, in Section 5.3 we describe how we find related entities at query time, using KB-QRec.

5.1 Overview

Intuitively, KB-QRec is a combination of the query-flow graph Gqf with a knowledge base K , the
two being bridged by entity-to-query links between entity nodes in K and query nodes in Gqf .

After we perform entity linking on the queries inGqf , we can further analyze the entities within K .
With the rich information in the knowledge base, we can better understand the rationale behind

the flow of queries.

Formally, the data structure underlying KB-QRec is a quadruple (Gqf ,K ,GEQ ,P), where:
• Gqf = (Q,EQQ ,W) is a query-flow graph as defined in Section 3.2,

• K = (VE ,EEE) is a KB, as defined in Section 3.3,

• GEQ is the bipartite graph of entities and queries as mentioned in Section 4,

• P is a set of meta paths over the entity types in K . Specifically, P[t] is the set of meta paths

starting with entity type t ∈ L, each having an associated importance score. We denote by P[t][p]
the weight of meta path p for entity type t .

Intuitively, with the knowledge base K enhancing the original query-flow graph, we can better

grasp the behavior of the search engine users, by analyzing the flow among entities. For example,

suppose the two queries q1 = “дeorдe lucas” and q2 = “star wars” appear in sequence in the same

session, and thus we have (q1,q2) ∈ EQQ . If we can detect the two entities e1 = “Georдe_Lucas”
and e2 = “Star_Wars”, we can also analyze the flow from e1 to e2 in our knowledge base K , in
addition to the flow from q1 to q2 in the query-flow graph. For example, we can find that in the

knowledge base e1 and e2 are connected by the meta path director
directed
−−−−−−−→ f ilm, and this is one

piece of evidence for the fact that users may tend to search for these two queries jointly. We can

then exploit such evidence when answering other queries referring to directors.

5.2 Offline steps in KB-QRec

Before detailing how we perform recommendation with KB-QRec, we first describe how to build

the necessary data structures from a query log offline. Section 5.2.1 reviews the query-flow graph

Gqf approach, and Section 5.2.2 shows how to build the meta path collection P.

5.2.1 Building the Query-Flow GraphGqf . We adopt the approach of [6] to build the query flow

graph Gqf . Specifically, we perform a linear scan over the query log. For each query pair (q,q′)
that appear in the same session, in this temporal order, we have (q,q′) ∈ EQQ . We setw(q,q′) as
the conditional transition probability from q to q′, i.e. f (q,q′)/f (q) where f (q,q′) is the frequency
of co-occurrences of q and q′ in sessions, and f (q) is the frequency of q itself.

5.2.2 Constructing the meta path collection P. If we view θ (q) as a representation of the query

q, we can extract the entity-to-entity transitions within sessions. For example, a query “star wars”

after query “george lucas” accounts for a transition from entityGeorдe_Lucas to entity Star_Wars .
In our KB, these entities have their corresponding nodes connected via multiple paths, and each

path stands for a specific relationship between the two entities. To capture these relationships, we

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 Zhipeng Huang et al.

build a set of outgoing meta paths in P for each entity type t ∈ L appearing in the query log, as

follows.

Suppose (q,q′) ∈ EQQ , andw(q,q
′) is the transition probability from q to q′. If we assume each

entity pair among θ (q) and θ (q′) has equal contribution towards the transition probabilityw(q,q′),
then we have the contribution of each entity pair as:

tq→q′(e → e ′) =
w(q,q′)

(|θ (q)| · |θ (q′)|)
,∀e ∈ θ (q), and e ′ ∈ θ (q′).

Note that the following equation holds for each query q:∑
(q,q′)∈EQQ

∑
e ∈θ (q)

∑
e ′∈theta(q′)

tq→q′(e → e ′) = 1,∀q ∈ Q .

Then, the transition probability from entity e to entity e ′ can be defined as:

tEE(e, e
′) = 1 −

∏
(q,q′)∈EQQ

(1 − tq→q′(e → e ′)). (1)

So far, we have defined the transition probability among entities derived from a query log.

Suppose now we receive a query q containing entity e: if e has already been encountered in the

query logs, we can directly use the information on e to perform recommendations for q. For
example, we can directly return the queries q′ with the largest entity-to-query transition probability

tEQ(e,q
′), or we can perform Personalized PageRank to retrieve queries with high probability.

However, this works only if e has been seen in the query log, and this can be rarely the case for

long-tail queries.

To address this problem, our intuition is to share the information between the short-tail and the

long-tail queries. One solution is to find a meta path in K to represent the relationship between

entity pairs. Then, for a new entity e that has not been encountered in the query log, we can use

this meta path to derive related entities in K . We now describe how to select from the knowledge

base K the meta paths that will be used in this way for query suggestion.

Given two entities e and e ′, most often, there can be a large number of distinct paths in K
connecting them. Each of these paths potentially represents a relationship between them. However,

not all these paths are equally meaningful. Unsurprisingly, a very long path between e and e ′ may

have a “diluted” meaning, as pointed out also in [42]; therefore a natural approach, and the one we

follow here, is to select the shortest paths between e and e ′ to represent their relationships.

Algorithm 2 details the steps in the computation of P. First, we compute all the entity-to-entity

transition probabilities according to Equation 1 (lines 1-4). Then, for each pair of entities (e, e ′)
with non-zero transition probability, we retrieve the shortest paths between e and e ′ from K (line

6), and transform them into the corresponding meta paths by linking the types instead of the actual

entities (line 7). Finally, for each entity type t ∈ ϕ(e), we bookkeep the meta path in P[t] and
accumulate the weight (line 9).

5.3 Finding related entities using KB-QRec

We are now ready to detail how to find related entities based on the entity linking result θ (q) using
KB-QRec.

For each e ∈ θ (q), we obtain its entity types ϕ(e) in the knowledge base K . Then, for each
entity type t ∈ ϕ(e), we perform a path-constrained random walk (PCRW) [26] on K , with each

type-related meta path p ∈ P[t], and get the related entities for e w.r.t. meta path p. To each of

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Entity-BasedQuery Recommendation for Long-Tail Queries 1:11

Algorithm 2: Computing P

Input: query-flow graph Gqf ,knowledge base K , entity transition probability tEE
Output: P

1 for (q,q′) ∈ EQQ do
2 for e ∈ θ (q) do
3 for e ′ ∈ θ (q′) do
4 Compute tEE(e, e

′) using Equation 1

5 for (e, e ′) ∈ tEE do
6 path ← дetShortestPath(K , e, e ′)

7 metapath ← дetMetaPath(K ,path)

8 for t ∈ ϕ(e) do
9 P[t][metapath] ← P[t][metapath] + tEE(e, e

′)/|ϕ(e)|

10 return P

these related entities e ′, we assign a weight as follows:

we ′ =
1

|θ (q)|

∑
e ∈θ (q)

∑
t ∈ϕ(e)

∑
p∈P[t]

P[t][p] · PCRW (e, e ′ | p),

where P[t][p] is the weight we get for meta path p during the offline phase, and PCRW (e, e ′ | p) is
the PCRW value from e to e ′ w.r.t. meta path p.
For example, in Figure 2, e1 has the types <Director> and <Person> in K . Suppose we learned

the following meta path with weight
1

2
:

Director
directed
−−−−−−−→ Film.

Then, we can use this pre-recorded meta path to find entities related to e1. Finally, the related entity,
e3 is assigned a weight of

1

2
· 0.5 = 0.25 (supposing 0.5 is the PCRW value from e1 to e3).

After obtaining the related entities, KB-QRec goes to Step 3 (query searching), as described in

Section 4. Basically, for each of the related entities e ′, we do a PPR onGqf ∪GEQ , with importance

weightwe ′ . We sum up the stable probability distribution for each PPR to obtain the aggregated per-

query result. The k queries with the largest aggregated probability should be our recommendations.

In our example, we perform PPR computations starting from e3, e4, and e5, respectively, with the

corresponding probability. Finally, we sum up the probability distribution over queries to get the

top-3 recommendations, q2 − q4.

6 D-QREC: CLICK-AWARE ENTITY-BASED QUERY RECOMMENDATION

In this section, we introduce a second entity-based query recommendation method, named D-QRec

which makes use of the click information from query logs to model the relevance between entities.

Given a query log, in the offline steps, we can build a bipartite graph consisting of entity nodes

and document nodes (or URLs), denoted the Document-Entity Graph (DEG in short). Formally, the

DEG is a graph GDE = (V ,E), where:
• The node set V consists of entity nodes and document nodes, i.e., V = VE ∪VD .
• The edge set E consists of entity-to-document edges and document-to-entity edges, i.e., E =

EDE ∪ EED . If we have e ∈ θ (q), and document d is clicked when the query q was issued, we have

(e,d) ∈ EED and (d, e) ∈ EDE .

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 Zhipeng Huang et al.

e3

e1

<Hidden_Fortress>

<Akira_Kurosawa>

e2

<George_Lucas>

d1

d2

Fig. 3. Illustrating the Document-Entity Graph (DEG).

Figure 3 illustrates a simple DEG, with three entity nodes and two document ones. For example,

there is an edge between entity e1 and document d1 because we recorded in the logs a query

containing e1 and leading to a click on document d1.
We assign weights to the DEG edges, proportional to the frequency of the co-occurrences of the

entity-document pair, as follows:

w(e,d) =

∑
e ∈θ (q),d ∈C(q) f (q)∑

e ∈θ (q) f (q)

w(d, e) =

∑
e ∈θ (q),d ∈C(q) f (q)∑

d ∈C(q) f (q)

where f (q) is the frequency of query q.

6.1 Finding related entities using D-QRec

Suppose q is the query issued by the user, and θ (q) is the set of entities that we obtain in Step

1 (entity linking). As the online step to retrieve related entities, we can perform Personalized

PageRank (PPR) from each e ∈ θ (q) over the DEG, and get the PPR vectors over entities. Then, the

entities with the largest aggregated PPR values are passed to the final Step 3, to find related queries.

For example, in Figure 3, assuming that θ (q) = {e1, e2}, we can perform PPR from e1 and e2,
respectively, and get the summation of the PPR vectors, leading to entity e3 as the retrieved one.

7 A HYBRID RECOMMENDATION SYSTEM

By design, both our KB-QRec and D-QRec methods exploit at query time only the entities within

the input query, ignoring the remaining (textual) content that may accompany them. Therefore,

we can potentially increase their effectiveness if we use them as parts of a more general hybrid

framework, which combines KB-QRec and D-QRec with other methods that focus on the so-called

flow and treat each query or term therein as a graph node.

In general, a query recommendation methodM can be viewed as a mapping

M : (QL,q,q′) → s,

where QL is a query log, q is a query issued by a user, q′ is a candidate query to be recommended

for q, and s is a score assigned by the system to q′ w.r.t. q. The top-k recommendation for q consists

of the k candidate queries q′ with the largest scores.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Entity-BasedQuery Recommendation for Long-Tail Queries 1:13

Given multiple recommendation methods, we can simply combine them into a hybrid recom-

mender system S by linearly aggregating their results:

S(QL,q,q′) =
∑
i

wi ×Mi (QL,q,q
′) (2)

wherewi is the weight of the i-th method, such that

∑
i wi = 1.

However, there are several issues with this linear combination approach. On one hand, it is not

clear how to set the weights. One possible solution may be to use some query history as a validation

set to tune the optimal weights but, as observed in our experiments, the performance of the linear

hybrid method does not vary much w.r.t. the weights, if the same values are used for all queries.

On the other hand, due to the different nature of the various recommendation methods, the scores

they generate may have different scale. For example, we observe that D-QRec gives very small

recommendation scores to the top-k recommendation candidates while QFG gives significantly

larger ones. Hence, it is not an easy task to combine them linearly.

Table 2. An example illustrating our hybrid method

input M1 M2

q1 R11 ∅

q2 R21 R22
q3 ∅ R32

To avoid this pitfall, as a better hybrid approach, we propose a priority-based method. More

precisely, suppose that we need to combine n recommendation methods, we can assign a different

priority to each of them. If the method with the highest priority M1 can provide enough recom-

mendations for the input query q, we just take them as the system’s output. Otherwise, we check

whether the method with the second highest priority can provide recommendations for q, and so

on. In this way, a recommendation method is only considered if the higher-priority ones cannot

provide sufficient recommendations. In Section 9, we compare the performances of hybrid systems

following different prioritization schemes.

Consider the toy example in Table 2. We can see that modelM1 can provide a recommendation

for two input queries q1 and q2. Under our prioritized hybrid method, the final recommendation for

q1 (or q2) would be just R11 (or R21). For q3, as the modelM1 with top priority cannot provide rec-

ommendations, we would consider the second model, and output R32 as our final recommendation.

8 EFFICIENT IMPLEMENTATION OF PPR

Query recommendation requires responses within typing latency, typically less than 100ms . Recall
that our recommendation methods require PCRW (in the KB-aware method) and PPR computations

(in the click-aware method) for Step 2, followed by other PPR computations in Step 3. The running

time of these steps would grow as the size of query logs becomes larger. Therefore, a key component

in our framework is the efficient implementation of PageRank-like computations.

8.1 PPR cache

One straightforward technique would be to maintain a PPR cache, which basically saves the PPR

result for an entity node after a query containing it was issued, and uses the result directly when

this entity is queried again. In our Step 3, we can first check whether the related entities are already

in the cache. If so, we can directly aggregate their PPR vectors and return the recommended queries.

Table 3 shows an example of such a PPR cache. Suppose in Step 3, we need to perform two PPRs,

one for <Akira_Kurosawa> with weight 0.7 the other for <George_Lucas> with weight 0.3. Suppose

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 Zhipeng Huang et al.

Table 3. Illustrating PPR Cache

entity PPR vector over queries

<Akira_Kurosawa> “akira kurosawa movie”: 0.5

“akira kurosawa george lucas”: 0.5

<George_Lucas> “akira kurosawa george lucas”: 0.4

“george lucas star wars”: 0.6

the PPR vectors for both entities are already in the cache. Then, we only need to aggregate the

PPR results with a linear combination, and get the aggregated PPR vectors over queries: “akira

kurosawa george lucas”: 0.47, “akira kurosawa movie”: 0.35, “george lucas star wars”: 0.18.

Although such a PPR cache can be efficient, it requires a lot of space for storing the PPR vectors,

which in a real-world scenario dealing with many queries and large logs seems unaffordable. This

is why we consider approximate PPR computation solutions, as discussed next.

8.2 PowerWalk

PowerWalk [27] is the state-of-art distributed framework for efficient PPR computation, which

strikes a balance between offline indexing and online querying.

8.2.1 Offline indexing. During the offline indexing phase, we use this Monte-Carlo method to

compute an approximate PPR vector for each entity node and each query node, in a PPR index. Note

that the accuracy of the PPR index can be adjusted depending on the available main memory. The

offline index is built on the VENUS system [12], which implements a disk-based graph processing

approach.

8.2.2 Online querying. For the online querying phase, we can use the vertex-centric decomposi-

tion algorithm (VERD) [27] to compute PPR vectors based on the index. The basic idea of VERD is

that the PPR vector of a node can be approximated from the PPR index values of its neighbors. The

VERD algorithm is built on PowerGraph [19], a distributed in-memory graph engine.

9 EXPERIMENTS

We compare the performances of four query recommendation methods: the query-flow graph

(denoted QFG) [6], the term-query-flow graph (denoted TQGraph) [8], our knowledge-aware

method (KB-QRec), and our click-aware method (D-QRec). In addition, we present the performance

of our priority-based hybrid system, combining TQGraph, KB-QRec and D-QRec by different

priority settings.
2

9.1 Implementation

For QFG, we created the query-flow graph as described in [6]. We adopt the typical recommendation

approach by maximum weight, i.e., for an input query q, the query q′ with largest value ofw(q,q′)
will be the one recommended. An advantage of this approach is that it can provide locally related

recommendations efficiently.

For TQGraph, we directly used a Scala implementation published by the authors of [17]. We

used their default parameters.

For KB-QRec, we used YAGO [41] as our KB. YAGO is a large-scale knowledge graph derived

from Wikipedia, WordNet, and GeoNames. We use its “Core Facts”, i.e., YAGO-Core [23], which

contains 4M facts (edges) of 125 types, over 2.1M entities. These entities have 365K entity types,

2
We cannot compare with the system of [43], as source code is not available.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Entity-BasedQuery Recommendation for Long-Tail Queries 1:15

organized in a hierarchy with 5 layers. We follow the procedure in Section 5.2.2 to select the meta

paths, and use the approach in Section 5.3 to provide recommendations.

Regarding the design of the hybrid system, we also compare our priority-based approach with a

linear aggregation one. We test by prioritizing over three single query recommendation methods:

TQGraph (short as T), KB-QRec (short as K), and D-QRec (short as D).

9.2 Dataset

In all our experiments, we used a well-known public dataset from a major commercial search

engine, which consists of web queries collected from 657k users over a two months period in 2006.

This dataset is sorted by anonymous user Id, containing 20M query instances corresponding to

around 9M distinct queries. After we sessionized the query log with θt = 30min, we obtained a total
of 12M sessions. As the focus of this paper is not on entity linking, we directly used Dexter2 [44]

to tag the entities from queries. After entity linking, we obtained a total of 0.4M distinct entities in

our dataset.

9.3 Automatic evaluation

9.3.1 Methodology. We adopt the automatic evaluation process described in [43], to assess the

performance of the five configurations as predictors of the next query in a session. Basically, we

make use of part of the query logs (training data) to predict the user’s behavior over a kept-apart

segment of query log (the test data). In the test query log, we denote by qi, j the jth query in the

session si . We assume that {qi, j | j > 1} is a good recommendation for query qi,1 which, as argued
in previous literature, is a reasonable assumption for practical evaluation in a broader scope.

To assess the performance of each method, we simply count its “hits” in the test data, i.e., for

each session, how many times one of the recommended top-k queries for qi,1 is in {qi, j | j > 1}.

While the objective of this evaluation approach may not necessarily be aligned with what good

recommendation may be on particular instances, by being entirely unsupervised and used on a

large number of sessions, it becomes a strong indicator of the techniques’ performance. However,

for a more complete assessment, we will also show the results of a complementary user study later

on.

9.3.2 Experimental setup. In order to test how robust each method is, we used 90%, 50%, and 10%

of the query logs to train the recommendation systems. We denote them as D90, D50, and D10. Note

that the smaller the query log, the less historical information we have on queries. The statistics of

these datasets are shown in Table 4. We can see that the number of sessions and the number of

distinct queries drops almost linearly with the size of query log, but the number of distinct entities

is more stable. This means that we can still rely on the information on entities, even when we have

a very small query log.

Table 4. Statistics about the datasets

#sessions #queries #entities

Dataset 12M 9.2M 0.40M

D90 11M 8.4M 0.39M

D50 5.9M 4.9M 0.30M

D10 1.2M 1.1M 0.13M

We used the remaining 10% of the query log, after training, to generate the test sessions. We first

extracted the sessions with at least two queries, and obtained 467473 such sessions. As explained

before, we then took the first query of each session as input and the following queries as the ground

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 Zhipeng Huang et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

D10 D50 D90

C
ov

er
ag

e

(a) Coverage on L’10

 QFG TQGraph KB-QRec D-QRec

 0

 0.2

 0.4

 0.6

 0.8

 1

D10 D50 D90

C
ov

er
ag

e

(b) Coverage on L’5

 0

 0.2

 0.4

 0.6

 0.8

 1

D10 D50 D90

C
ov

er
ag

e

(c) Coverage on L’3

Fig. 4. Coverage results for single methods on long-tail queries with entities.

0%

0.2%

0.4%

0.6%

0.8%

D10 D50 D90

P
re

ci
si

on
@

5

(a) Precision@5 on L’10

 QFG TQGraph KB-QRec D-QRec

0%

0.2%

0.4%

0.6%

0.8%

D10 D50 D90

P
re

ci
si

on
@

5

(b) Precision@5 on L’5

0%

0.2%

0.4%

0.6%

0.8%

D10 D50 D90

P
re

ci
si

on
@

5

(c) Precision@5 on L’3

Fig. 5. Precision@5 results for single methods on long-tail queries with entities.

truth recommendations. Formally, the ground truth for input query qi,1 is {qi, j | j > 1}, where qi, j
is the jth query appearing in the ith session.

In addition, we extracted the long-tail queries from the test sessions: if the frequency of a query

in the whole query log does not exceed a threshold θf , we refer to it as belonging to the long-tail

class. Then, we form our test sessions by those whose first query qi,1 belongs to the long-tail. By

setting θf to be 10, 5, and 3, respectively, we have three different test datasets L10, L5, and L3. Note
that these three test datasets contain only long-tail queries w.r.t. the frequency threshold θf , but
they include both entity-bearing queries and queries without entities. As our knowledge-enabled

method can only apply to entity-bearing queries, we further filter our all sessions where the first

query is not of this kind, i.e., |θ (qi,1)| = 0. This leads to the three test datasets L′
10
, L′

5
, and L′

3
, which

contain only sessions starting by long-tail queries with entities.

We stress here that the feature of containing entities or not is not really affected by the frequency;

head, torso, or tail queries alike have a ratio of approximately 60% entity-bearing queries.

We measured the following two metrics to evaluate the performance of each configuration:

• Coveraдe . Percentage of input queries for which the evaluated method provides at least one

recommendation.

• Precision@5. Percentage of ground truth queries that appear in the top-5 recommendation

list of the method. Formally, precision@5 = #HIT
5·#query , where #HIT is the total number of

recommended queries that are part of the ground truth, and #query is the number of input

queries.

9.3.3 Results of the four methods for long-tail entity-bearing queries. Figure 4 presents the

coverage results for four independent methods. We can see that (i) D-QRec has the highest coverage

(more than 90%), even for the smallest query log D10, (ii) KB-QRec and TQGraph have relatively

high coverage, as TQGraph is also proposed for long-tail queries. (iii) QFG has extremely low

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Entity-BasedQuery Recommendation for Long-Tail Queries 1:17

 0

 0.2

 0.4

 0.6

 0.8

 1

D10 D50 D90

C
ov

er
ag

e

(a) Coverage on L10

 QFG TQGraph KB-QRec D-QRec

 0

 0.2

 0.4

 0.6

 0.8

 1

D10 D50 D90

C
ov

er
ag

e

(b) Coverage on L5

 0

 0.2

 0.4

 0.6

 0.8

 1

D10 D50 D90

C
ov

er
ag

e

(c) Coverage on L3

Fig. 6. Coverage results for single methods on general long-tail queries.

0%

0.2%

0.4%

0.6%

0.8%

D10 D50 D90

P
re

ci
si

on
@

5

(a) Precision@5 on L10

 QFG TQGraph KB-QRec D-QRec

0%

0.2%

0.4%

0.6%

0.8%

D10 D50 D90

P
re

ci
si

on
@

5

(b) Precision@5 on L5

0%

0.2%

0.4%

0.6%

0.8%

D10 D50 D90

P
re

ci
si

on
@

5

(c) Precision@5 on L3

Fig. 7. Precision@5 results for single methods on general long-tail queries.

 0

 2

 4

 6

 8

D10 D50 D90

S
em

D
is

t

(a) SemDist on L10

Random QFG TQGraph KB-QRec D-QRec

 0

 2

 4

 6

 8

D10 D50 D90

S
em

D
is

t

(b) SemDist on L5

 0

 2

 4

 6

 8

D10 D50 D90

S
em

D
is

t

(c) SemDist on L3

Fig. 8. SemDist results for single methods on general long-tail queries.

coverage compared to the other three methods, (iv) TQGraph and QFG have lower coverage when

we use a smaller query log (from D90 to D10), while D-QRec and KB-QRec have stable coverage.

This is because when we are using a smaller query log, there is a higher chance that we have not

seen the query or the terms therein in the logs, making QFG and TQGraph incapable of giving any

recommendation.

Figure 5 presents the precision@5 results for the four methods. We can see that (i) D-QRec

has the highest precision@5, (ii) QFG has the lowest precision@5, (iii) KB-QRec does better than

TQGraph, even though it has lower coverage, and (iv) all the four methods have higher precision@5

when we use a larger query log (from D10 to D90).

If we compare the precision@5 results across the three data configurations, we can see that (i)

the performance for QFG drops when we test on a longer tail (queries with lower frequencies), and

(ii) KB-QRec and D-QRec have a rather stable performance even when we test on queries with

lower frequencies. This is because KB-QRec and D-QRec only consider the entities θ (q) in q. Even
when the query q does not appear frequently in the query log, they can still make use of the flow

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 Zhipeng Huang et al.

recorded for other queries q′, containing the same entities. This property makes KB-QRec and

D-QRec suitable for long-tail queries, and even for those that were not seen before in the query log.

9.3.4 Results of the four methods for general long-tail queries. Recall that the previous results
show that the two proposed methods can yield better recommendations for long-tail queries with at

least one entity. Now, for a complete assessment, we show the results for general long-tail queries,

including those in which we cannot find entities.

Figure 6 presents the coverage results. We can see that the results are quite similar to those in

Figure 4, with some notable differences. Compared with the results in Figure 4, QFG has almost the

same coverage, while the other three methods have slightly worse performance. For TQGraph,

this is because a non-entity-bearing query often has a strange format (a URL or just messy code)

thus it is more difficult for recommendation. For our two entity-based methods, this is because

almost half of the queries are without entities, and our proposed methods cannot handled these

queries properly.

Figure 7 presents the precision@5 results. With respect to the results of Figure 5, the notable

differences are as follows. First, QFG has slightly better precision@5, while TQGraph has almost

the same precision@5. Our entity-based methods (KB-QRecand D-QRec) have slightly worse

performance, as expected, for the same reasons as before.

9.3.5 Semantic quality of the non-hit recommendations. The values of precision@5 for all four

recommendation methods we test are quite low, because precision@5 only consider the recom-

mended queries that strictly hit the ground truth. However, the non-hit recommended queries may

still be useful, as long as they bear a semantic similarity to the ground truth. For example, assuming

that the ground truth query is “booking restaurant chicago”, a recommendation “dinner booking

chicago” can be considered useful, as there is a clearly close semantic meaning.

To evaluate the semantic distance between the ground truth query and the recommended queries,

we adopt the popular NLP technique word2vec [31], which can represent the words in a vector

space, while preserving their semantic proximity. More precisely, we directly use the pre-trained

word vectors provided by GloVe [34], which use 300 dimensions trained over 6B tokens. For a query

q with ground truth set д(q), supposing a recommended query is q′, then we define the semantic

relevance of q′ w.r.t. the ground truth as the minimal distance to a query q∗ ∈ д(q). Formally,

SemDist(q′) =minq∗∈д(q)dist(q
′,q∗),

where dist() is the Euclidean distance between two vectors.

Figure 8 shows the average SemDist of the top-5 recommendation for the four independent

methods and, for comparison, for a Random baseline, which recommends queries uniformly at

random. We can see that the four query recommendation methods have similar SemDist, while

Random has a relatively large SemDist. This means that the recommended queries given by the

four methods are generally useful. The SemDist measure remains stable w.r.t. the size of the query

log and the frequency of the test queries.

9.3.6 Diversity. We also conducted an analysis of the diversity in the recommended queries. We

compare the difference between the successful recommendations (log hits) and the original input

queries.

We observe that a large portion of the successful recommendations are rather simple reformula-

tions of the input query q. For an extreme example, a successful recommendation for query “akira

kurosawa” is “Akira Kurosawa”. Obviously, such a recommendation provides little extra information

to the user. A better recommendation would be “akira kurosawa hidden fortress”, which carries

extra information. Inspired by this observation, we evaluate the quality of each method’s hits, by

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Entity-BasedQuery Recommendation for Long-Tail Queries 1:19

looking at the difference between the recommended query and the input query. We use the average

edit distance (short as AED), larger AEDs meaning more diverse recommendations.

We only report here the results for the datasets L′
5
with D50, as the ones on the other datasets are

similar. As shown in Table 5, the methods QFG and TQGraph tend to recommend queries which

are very similar to the original one. Compared with them, KB-QRec and D-QRec have a more

diverse recommendation result, because they do not consider the text of the queries and reach

diverse recommendations by means of other entities.

Table 5. Results of Average Edit Distance (AED)

QFG TQGraph KB-QRec D-QRec

AED 4.267 3.299 11.631 11.128

9.4 A user study

Table 6. Results of the user study

Method Coverage

Not Somewhat Very

Useful Useful Useful

QFG 14% 48.3% 23.2% 28.5%

TQGraph 28% 49.5% 31.8% 18.7%

KB-QRec 64% 44.2% 36.9% 18.9%

D-QRec 76% 40.3% 44.9% 14.7%

Following the evaluation methodology from prior work involving editorial assessment, we also

conducted a user study to further compare the performance of all the configurations with D50 as

the query log.

From the L5 dataset mentioned before, we randomly extracted 50 queries to be our testbed. For

each of the five configurations, we get the top-5 recommendations for these queries. For each query

q and each of its recommendations q′, we form a pair (q,q′) to be assessed by 30 editors. Then,

we shuffle these pairs so that the editors cannot distinguish from which configuration each pair

originates. The editors were asked to give a rating to each of these pairs, using one of the following

scores: not use f ul , somewhat use f ul , and very use f ul . Each pair was assessed by at least 6 users.

We also record the coverage of each configuration.

The results are shown in Table 6. We can see that (i) our entity-based methods (KB-QRec and

D-QRec) have much better coverage than QFG and TQGraph, (ii) among the four methods, if we do

not consider the coverage, QFG has the best recommendation quality in terms of users’ satisfaction;

however, having such a low coverage means it cannot provide any recommendation for most of

the queries, and (iii) TQGraph and our KB-QRec have similar user feedback overall, while our

D-QRec has more recommendations in the “Somehow Useful” category.

In summary, considering their high coverage, our entity-based methods give a better performance

trade-off for long-tail queries.

9.5 Evaluation of the hybrid recommendation system

We also evaluated the performance of the priority-based hybrid system, for various ways of setting

the priorities, and also with respect to the linear hybrid system. We combined the three best

performing methods, i.e., TQGraph (short as T), KB-QRec (short as K) and D-QRec (short as D),

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 Zhipeng Huang et al.

0%

0.2%

0.4%

0.6%

linear T+K+D T+D+K K+T+D K+D+T D+K+T D+T+K

Results for Hybrid Methods on D50 and L’5

Priority 1 Priority 2 Priority 3

Fig. 9. Precision@5 results for hybrid systems on long-tail queries with entities.

and we test all the six possible priority orders. For example, we denote by “T+K+D” the system

giving TQGraph the top priority, KB-QRec the second priority, and D-QRec the lowest priority.

For the linear aggregation system as discussed in Section 7, we show its performance when using

the optimal weight combination.

As all the configurations have the same coverage, we only compare their performances by

precision@5. The results are in Figure 9. We can see that (i) the priority-based approach “T+K+D”

achieves the best precision@5, and (ii) if we give D-QRec the top priority, the hybrid system

behaves like D-QRec alone. This is because D-QRec has very high coverage (almost 100%), so the

remaining methods do not often have the chance to contribute to the result of the hybrid system.

9.6 Efficiency

In this section, we evaluate the running time of the proposed methods. All the experiments were

performed on a 3.40 GHz quad-core machine running Ubuntu 12.04, with 16 GB of main memory.

Table 7 shows the performance of the baseline methods using PPR cache. Observe that they are

both fast and can provide instantaneous query recommendations.

Table 7. Average Running Time of QFG and TQGraph

D10 D50 D90

QFG 2ms 6ms 14ms

TQGraph 2ms 9ms 17ms

For the offline part of KB-QRec, the times for building the necessary data structures, including

reading and writing on disk, are shown in Table 8. As we can see, the time for building the index

increases linearly with the size of the query log. Specifically, on D90, it takes 132 minutes to build

the index, including the meta path set P, which remains a reasonable time range for this offline

step. By design, D-QRec does not require offline processing.

For the offline part of PowerWalk, as VENUS is not open-source, we asked the authors of [19]

to run the necessary experiments on our behalf. The testbed is a single machine with 16GB RAM

and a quad-core 3.70GHz CPU (Intel E5-1620). The running time for building the offline index for

PowerWalk is shown in Table 8.

For the online part, we need to follow the three steps detailed in Section 4 to perform recommen-

dations.

For Step 1, as pointed out in [5], entity linking can be done in a fast and space-efficient manner.

In our experiments, we directly use the open-source framework of Dexter2 [44] to perform entity

linking. Its average running time for is 59ms per query, similar to the result of the Wiki f ier

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Entity-BasedQuery Recommendation for Long-Tail Queries 1:21

Table 8. Efficiency for building index offline.

D10 D50 D90

KB-QRec 14 min 56 min 132 min

PowerWalk 5.74 s 44.87 s 62.93 s

Table 9. Efficiency (in ms)

Step 2 Step 2 Step 3 Step 3 Step 3 KB-QRec D-QRec

(KB-QRec) (D-QRec) (basic) (PPR cache) (PowerWalk)

D90 34 ms 2ms 91 ms 9 ms 9ms 43 ms 11 ms

D50 34 ms 1ms 55 ms 5 ms 2ms 36 ms 6 ms

D10 33 ms 1ms 13 ms 1 ms 2ms 35 ms 3 ms

method [14], as reported in [5]. If one would use instead the FEL method proposed in [5], the entity

linking time would be further reduced to 0.4ms .
Table 9 shows the average running time for Steps 2 and 3, and for the end-to-end system using the

two proposed methods. We can see that (i) it takes 34ms for entity expansion in KB-QRec (Step 2),

and this does not change with the size of the query log, because we only perform path-constrained

random walks on the KB; (ii) Step 2 for D-QRec is very fast, as the number of entities is relatively

small, compared with the number of queries; (iii) if we do not use a cache, the running time for

PPR computations (Step 3) varies almost linearly with the size of query log; on the largest query

log, D90, this step takes 91ms ; (iv) if we do use a cache, as discussed in Section 8.1, the time for PPR

computations is tenfold reduced; now, it takes only 9ms on D90; (v) adopting PowerWalk can lead

to similar running times as with the PPR cache, while PowerWalk does not require nearly as much

storage; and (vi) taking into consideration all the overhead, assuming PowerWalk is adopted as

the PPR speed-up component, the online running time for KB-QRec is around 40ms , while that of
D-QRec is around 10ms , i.e., both methods generate their query recommendations instantaneously.

10 CONCLUSION

In this paper, we propose an entity-based framework for query recommendation, one of the most

visible features in Web search today. Our framework first extracts entities from the input query,

and uses these entities to explore new ones, which are then used to provide query suggestions. We

develop two algorithms, namely KB-QRec and D-QRec, which use KBs and click logs respectively

to provide query recommendations that are both relevant and diverse. The performance of our

suggested methods for long-tail queries is significantly better compared to the state-of-the-art

techniques. This is important, as long-tail queries constitute a large part of the query traffic in Web

search engines and it is difficult to recommend queries for them.

Since semantics complements the behavioral patterns that can be extracted from query logs,

our technique is orthogonal to existing methods. As such, it should be combined with semantic-

agnostic approaches, such as the query-flow graph or the term-query flow graph, which exploit the

sequentiality of similar queries and the “wisdom-of-crowds”. We develop this idea into a hybrid

recommendation system, which acts as a middleware over various methods for selecting recom-

mendation candidates, and uses a priority-based integration scheme. Using a real-world dataset

from a major commercial Web search engine, extensive automatic evaluation and experiments with

editorial assessments show that both our entity-based methods, and the hybrid system integrating

them, can bring significant improvements, in terms of both coverage and precision. Furthermore,

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 Zhipeng Huang et al.

our experiments on efficiency show that our techniques can be used within “typing latency”, and

can provide almost instantaneous results.

ACKNOWLEDGMENTS

Reynold Cheng, Zhipeng Huang, Yudian Zheng and Jing Yan were supported by the Research

Grants Council of Hong Kong (RGC Projects HKU 17229116 and 17205115) and the University of

Hong Kong (Projects 104004572, 102009508, 104004129). Bogdan Cautis was partially supported by

the French research project ALICIA (grant ANR-13-CORD-0020). Nikos Mamoulis was supported

by the European Union’s Horizon 2020 research and innovation programme under grant agreement

No 657347. We would like to thank the reviewers for their insightful comments.

REFERENCES

[1] Ricardo A. Baeza-Yates, Carlos A. Hurtado, and Marcelo Mendoza. 2004. Query Recommendation Using Query Logs in

Search Engines. In Current Trends in Database Technology - EDBT Workshops. Springer, 588–596.

[2] Ricardo A. Baeza-Yates and Alessandro Tiberi. 2007. Extracting semantic relations from query logs. In KDD. ACM,

76–85.

[3] Ziv Bar-Yossef and Naama Kraus. 2011. Context-sensitive query auto-completion. In Proceedings of the 20th international

conference on World wide web. ACM, 107–116.

[4] Roi Blanco, Berkant Barla Cambazoglu, Peter Mika, and Nicolas Torzec. 2013. Entity recommendations in web search.

In International Semantic Web Conference. Springer, 33–48.

[5] Roi Blanco, Giuseppe Ottaviano, and Edgar Meij. 2015. Fast and space-efficient entity linking for queries. In Proceedings

of the Eighth ACM International Conference on Web Search and Data Mining. ACM, 179–188.

[6] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, Aristides Gionis, and Sebastiano Vigna. 2008. The

query-flow graph: model and applications. In CIKM. ACM, 609–618.

[7] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: a collaboratively created

graph database for structuring human knowledge. In SIGMOD. ACM, 1247–1250.

[8] Francesco Bonchi, Raffaele Perego, Fabrizio Silvestri, Hossein Vahabi, and Rossano Venturini. 2012. Efficient query

recommendations in the long tail via center-piece subgraphs. In SIGIR. ACM, 345–354.

[9] Daniele Broccolo, Lorenzo Marcon, Franco Maria Nardini, Raffaele Perego, and Fabrizio Silvestri. 2012. Generating

suggestions for queries in the long tail with an inverted index. Inf. Process. Manage. 48, 2 (2012), 326–339.

[10] Fei Cai, Shangsong Liang, and Maarten de Rijke. 2014. Time-sensitive Personalized Query Auto-Completion. In CIKM.

ACM, 1599–1608.

[11] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and Hang Li. 2008. Context-aware query

suggestion by mining click-through and session data. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining. ACM, 875–883.

[12] Jiefeng Cheng, Qin Liu, Zhenguo Li, Wei Fan, John CS Lui, and Cheng He. 2015. VENUS: Vertex-centric streamlined

graph computation on a single PC. In ICDE. IEEE, 1131–1142.

[13] Reynold Cheng, Zhipeng Huang, Yudian Zheng, Jing Yan, Ka Yu Wong, and Eddie Ng. 2017. Meta Paths and Meta Struc-

tures: Analysing Large Heterogeneous Information Networks. In Asia-Pacific Web (APWeb) and Web-Age Information

Management (WAIM) Joint Conference on Web and Big Data. Springer, 3–7.

[14] Xiao Cheng and Dan Roth. 2013. Relational inference for wikification. Urbana (2013), 1787–1796.

[15] W Bruce Croft, Donald Metzler, and Trevor Strohman. 2010. Search engines: Information retrieval in practice. Vol. 283.

Addison-Wesley Reading.

[16] Doug Downey, Susan T. Dumais, and Eric Horvitz. 2007. Heads and tails: studies of web search with common and rare

queries. In SIGIR. ACM, 847–848.

[17] Henry Feild and James Allan. 2013. Task-aware query recommendation. In SIGIR. ACM, 83–92.

[18] Bruno M. Fonseca, Paulo Braz Golgher, Edleno Silva de Moura, Bruno Pôssas, and Nivio Ziviani. 2003. Discovering

Search Engine Related Queries Using Association Rules. J. Web Eng. 2, 4 (2003), 215–227.

[19] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. Powergraph: Distributed

graph-parallel computation on natural graphs. In OSDI. 17–30.

[20] Qi He, Daxin Jiang, Zhen Liao, Steven CH Hoi, Kuiyu Chang, Ee-Peng Lim, and Hang Li. 2009. Web query recommen-

dation via sequential query prediction. In Data Engineering, 2009. ICDE’09. IEEE 25th International Conference on. IEEE,

1443–1454.

[21] Zhipeng Huang, Bogdan Cautis, Reynold Cheng, and Yudian Zheng. 2016. KB-Enabled Query Recommendation for

Long-Tail Queries. In CIKM. 2107–2112.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Entity-BasedQuery Recommendation for Long-Tail Queries 1:23

[22] Zhipeng Huang and Nikos Mamoulis. 2017. Location-Aware Query Recommendation for Search Engines at Scale. In

International Symposium on Spatial and Temporal Databases. Springer, 203–220.

[23] Zhipeng Huang, Yudian Zheng, Reynold Cheng, Yizhou Sun, Nikos Mamoulis, and Xiang Li. 2016. Meta structure: Com-

puting relevance in large heterogeneous information networks. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 1595–1604.

[24] Alpa Jain, Umut Ozertem, and Emre Velipasaoglu. 2011. Synthesizing high utility suggestions for rare web search

queries. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information

Retrieval. ACM, 805–814.

[25] Shan Jiang, Yuening Hu, Changsung Kang, Tim Daly Jr, Dawei Yin, Yi Chang, and Chengxiang Zhai. 2016. Learning

query and document relevance from a web-scale click graph. In Proceedings of the 39th International ACM SIGIR

conference on Research and Development in Information Retrieval. ACM, 185–194.

[26] Ni Lao and William W Cohen. 2010. Relational retrieval using a combination of path-constrained random walks.

Machine learning 81, 1 (2010), 53–67.

[27] Qin Liu, Zhenguo Li, John Lui, and Jiefeng Cheng. 2016. PowerWalk: Scalable Personalized PageRank via Random

Walks with Vertex-Centric Decomposition. In CIKM. ACM, 195–204.

[28] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. 2013. YAGO3: A Knowledge Base from Multilingual

Wikipedias. In CIDR.

[29] Changping Meng, Reynold Cheng, Silviu Maniu, Pierre Senellart, and Wangda Zhang. 2015. Discovering meta-paths

in large heterogeneous information networks. In Proceedings of the 24th International Conference on World Wide Web.

International World Wide Web Conferences Steering Committee, 754–764.

[30] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed Representations of Words

and Phrases and their Compositionality. CoRR abs/1310.4546 (2013). http://arxiv.org/abs/1310.4546

[31] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed Representations of Words

and Phrases and their Compositionality. Advances in Neural Information Processing Systems 26 (2013), 3111–3119.

[32] Umut Ozertem, Olivier Chapelle, Pinar Donmez, and Emre Velipasaoglu. 2012. Learning to suggest: a machine learning

framework for ranking query suggestions. In Proceedings of the 35th international ACM SIGIR conference on Research

and development in information retrieval. ACM, 25–34.

[33] Patrick Pantel and Ariel Fuxman. 2011. Jigs and lures: Associating web queries with structured entities. In Proceedings

of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1.

Association for Computational Linguistics, 83–92.

[34] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation.

In EMNLP. 1532–1543. http://www.aclweb.org/anthology/D14-1162

[35] Shuyao Qi, Dingming Wu, and Nikos Mamoulis. 2016. Location Aware Keyword Query Suggestion Based on Document

Proximity. TKDE 28, 1 (2016), 82–97.

[36] Ridho Reinanda, Edgar Meij, and Maarten de Rijke. 2015. Mining, Ranking and Recommending Entity Aspects. In

SIGIR. ACM, 263–272.

[37] Rodrygo LT Santos, Craig Macdonald, and Iadh Ounis. 2013. Learning to rank query suggestions for adhoc and

diversity search. Information Retrieval 16, 4 (2013), 429–451.

[38] Milad Shokouhi. 2013. Learning to personalize query auto-completion. In Proceedings of the 36th international ACM

SIGIR conference on Research and development in information retrieval. ACM, 103–112.

[39] Milad Shokouhi and Kira Radinsky. 2012. Time-sensitive query auto-completion. In SIGIR. ACM, 601–610.

[40] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue Simonsen, and Jian-Yun Nie. 2015. A

Hierarchical Recurrent Encoder-Decoder for Generative Context-Aware Query Suggestion. In CIKM. ACM, 553–562.

[41] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of semantic knowledge. InWWW. ACM,

697–706.

[42] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim: Meta path-based top-k similarity

search in heterogeneous information networks. Proceedings of the VLDB Endowment 4, 11 (2011), 992–1003.

[43] Idan Szpektor, Aristides Gionis, and Yoelle Maarek. 2011. Improving recommendation for long-tail queries via templates.

In WWW. ACM, 47–56.

[44] Salvatore Trani, Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. 2014. Dexter 2.0: an open

source tool for semantically enriching data. In ISWC. 417–420.

[45] Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. 2001. Clustering user queries of a search engine. In Proceedings of

the 10th international conference on World Wide Web. acm, 162–168.

[46] www-dbpedia 2011. DBpedia 3.7. http://wiki.dbpedia.org/Downloads37. (2011).

[47] Zhiyong Zhang and Olfa Nasraoui. 2006. Mining search engine query logs for query recommendation. In Proceedings

of the 15th international conference on World Wide Web. ACM, 1039–1040.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://arxiv.org/abs/1310.4546
http://www.aclweb.org/anthology/D14-1162
http://wiki.dbpedia.org/Downloads37

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph-based Approaches
	2.2 Machine Learning-based Approaches
	2.3 Semantics-based Approaches
	2.4 Long-tail Query Recommendation

	3 Preliminaries
	3.1 Query logs
	3.2 Query-flow graph
	3.3 Knowledge base and meta paths

	4 Entity-Based Query Recommendation Framework
	5 KB-QRec: Knowledge-aware Entity-Based Query Recommendation
	5.1 Overview
	5.2 Offline steps in KB-QRec
	5.3 Finding related entities using KB-QRec

	6 D-QRec: Click-aware entity-based query recommendation
	6.1 Finding related entities using D-QRec

	7 A Hybrid Recommendation System
	8 Efficient Implementation of PPR
	8.1 PPR cache
	8.2 PowerWalk

	9 Experiments
	9.1 Implementation
	9.2 Dataset
	9.3 Automatic evaluation
	9.4 A user study
	9.5 Evaluation of the hybrid recommendation system
	9.6 Efficiency

	10 Conclusion
	References

