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Abstract—Identifying the labels of points of interest (POIs),
aka POI labelling, provides significant benefits in location-based
services. However, the quality of raw labels manually added by
users or generated by artificial algorithms cannot be guaranteed.
Such low-quality labels decrease the usability and result in bad
user experiences. In this paper, by observing that crowdsourcing
is a best-fit for computer-hard tasks, we leverage crowdsourcing
to improve the quality of POI labelling. To our best knowledge,
this is the first work on crowdsourced POI labelling tasks. In
particular, there are two sub-problems: (1) how to infer the
correct labels for each POI based on workers’ answers, and
(2) how to effectively assign proper tasks to workers in order
to make more accurate inference for next available workers. To
address these two problems, we propose a framework consisting
of an inference model and an online task assigner. The inference
model measures the quality of a worker on a POI by elaborately
exploiting (i) worker’s inherent quality, (ii) the spatial distance
between the worker and the POI, and (iii) the POI influence,
which can provide reliable inference results once a worker
submits an answer. As workers are dynamically coming, the
online task assigner judiciously assigns proper tasks to them so
as to benefit the inference. The inference model and task assigner
work alternately to continuously improve the overall quality. We
conduct extensive experiments on a real crowdsourcing platform,
and the results on two real datasets show that our method
significantly outperforms state-of-the-art approaches.

I. INTRODUCTION

With the popularity of location-based services, labels are
generated in order to provide concise yet precise descriptions
for each point of interest (POI). Previous studies have shown
that searching resources based on their associated labels leads
to more effective and accurate resource retrieval for users [1].
Moreover, accurate labels can also benefit other applications,
e.g., activity recommendation to users [25].

However, the quality of POI labels cannot be guaranteed
in reality, because anonymously incredible or malicious users
may abuse the right of manual labelling, while labels automati-
cally generated by some artificial algorithms [9,19] still involve
low-quality labels due to limited accuracy of those algorithms.
Therefore, it calls for an effective method to generate high-
quality labels. Fortunately, crowdsourcing emerges and be-
comes an effective way to handle computer-hard tasks, which
are difficult for computers (e.g., POI labelling). It inspires
us to exploit crowdsourcing to improve the labelling quality.

However, crowdsourcing is not free (as we need to pay the
workers who label the POIs). To reduce the monetary cost,
we can first utilize existing techniques to generate candidate
labels for POIs and then ask crowdsourced workers to select
correct labels from the candidate labels to ensure the quality.

In this paper we study the POI labelling problem: given a
set of POIs, each of which has several candidate labels, and a
budget B, we identify the correct labels for the POIs by asking
at most B tasks, where each task asks workers to select correct
labels from the candidate labels of a POI. In particular, there
are two sub-problems to address: (1) Label Inference: how
to infer the correct labels for each task based on workers’
answers; (2) Task Assignment: when workers are requesting
tasks, how to assign proper tasks to these workers to make
more accurate inference. To our best knowledge, this is the
first study on crowdsourced POI labelling.

Although many studies have investigated the answer infer-
ence problem and task assignment problem, they focus on
choosing labels on objects such as images and entities [7,12,
15,16,22,24,27] which do not involve the locations of tasks
or workers. Actually the distance between workers and POIs
has a significant impact on the label inference (see Section V
for detailed justifications). Recently, spatial crowdsourcing
tasks have also raised increasing attentions from the research
community [4,13,14,20,21]. However, they have two main
differences from our problem. First, they require workers to
travel to the specific locations to answer the tasks, e.g., taking
photos of a restaurant or reporting the congestion of a place;
while we drop out this requirement as workers can be familiar
with the POIs even when they are not at the locations at
present. Second, they focus on minimizing the travel distances
of workers. In contrast, we aim to improve the labelling quality.

Crowdsourced POI labelling has many challenges. First,
there exist more complicated factors that can affect the answer
quality for POI labelling tasks as compared to simple labelling
tasks: (1) famous POIs often receive higher quality answers
than ordinary ones and (2) the distance between a worker
and a POI has effect on the quality and the impact varies
for different workers. It is non-trivial to form these factors
into one effective model to measure workers’ quality and
provide reliable inference results at the same time. Second,
as workers are dynamically coming, it is hard to instantly
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identify workers’ characteristics and judiciously assign proper
tasks to them to further improve the inference quality by well
exploiting the previous answers of these workers.

To address these challenges, we propose a POI-Labelling
Framework (as illustrated in Figure 1) with two main com-
ponents: (1) An inference model, which takes POI tasks and
workers’ answers as input and returns the inference results for
each task. We develop a graphical probability inference model
by elaborately exploiting (i) the worker’s inherent quality,
(ii) the spatial distance between the worker and the POI,
and (iii) the POI influence (see Section III for details). (2)
An online task assigner, which takes the estimated worker
quality and the POI influence as input, and assigns a group of
tasks for each available worker by maximizing the accuracy
improvement (see Section IV). Given a cost budget (i.e., the
number of allowed assignment), the inference model and the
task assigner work alternately for a dynamic scenario: when
workers are coming for tasks, the task assigner proceeds to
generate the best-fit tasks to each worker. Then the answers
are collected and the inference model proceeds to estimate
the worker quality based on current answers. The measured
qualities are then used by the assigner in judiciously assigning
the best tasks to next round of coming workers, such that the
overall accuracy of the inference results can keep growing.
Such alternate process continues until the budget runs out.

To summarize, we make the following contributions.
(1) We formalize the crowdsourced POI labelling problem

and its two sub-problems: label inference and task assignment
(Section II).

(2) We develop an effective inference model which uti-
lizes the spatial location information of workers and POIs to
measure the worker quality and the POI influence in a finer-
granularity, and utilize them to infer results (Section III).

(3) Based on the inference model, we propose an adaptive
task assignment algorithm to further improve the inference
accuracy (Section IV).

(4) We conduct extensive experiments on a real crowdsourc-
ing platform, and the results show that our methods signifi-
cantly outperforms state-of-the-art approaches (Section V).

II. PROBLEM STATEMENT

POI Labelling Problem. Given a set of POI labelling tasks
T = {t1, t2, . . . , t|T |}, each task t = {Ot, Lt} includes a POI
Ot (with a name and a geo-location) and a label set Lt =
{lt,1, lt,2, . . . , lt,|Lt|}. For simplicity of presentation, in the rest
of the paper we use task t and POI Ot interchangeably and
assume that each task has the same number of labels unless
specified otherwise. But note that our method can support the
case that different tasks have different number of labels. Each
label lt,i (1 ≤ i ≤ |Lt|) has a true result 1/0 (“yes/no”), where
1 (0) indicates that lt,i is a correct (an incorrect) label for Ot.
Workers. Each worker w has a location (e.g. home, office).
For each task t = {Ot, Lt}, workers are asked to select labels
from Lt which they think correct for Ot. We denote the answer
set by R = {(w, t,R(w, t))}, where R(w, t) = {rw,t,k | 1 ≤
k ≤ |Lt|} is w’s answer for a task t and rw,t,k = 1/0 is w’s
answer for a certain label lt,k. Figure 2 shows a labelling task
for the POI “Beijing Olympic Forest Park”. Among the ten

POI-Labelling Framework 
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Fig. 1. POI Labelling Framework

Please select relevant labels for 
“Beijing Olympic Forest Park”

1. Park
3. Sports
5. Places
7. Business
9. Flag-rising

 2. Olympics
 4. Fragrant hill
 6. Stadium
 8. Relax zone
10.Take a walk

Fig. 2. An Example of Task

labels, if a worker w thinks “1. Park” is a correct label for this
POI by ticking its box, then rw,t,1 = 1; otherwise rw,t,1 = 0.
Task Assignment. When a set W of available workers are
requesting for tasks, it needs to assign h tasks (i.e., a human-
intelligence task) to each worker. We denote the tasks assigned
to W as A(W ) = {A(w)|w ∈W} where A(w) is the set of h
tasks assigned to worker w. A worker can do multiple tasks and
we denote T (w) = {t ∈ T |t is done by w} as the set of tasks
already done by worker w. Meanwhile, a task can be answered
by several workers, we denote W (t) = {w|w has done task t}
as the set of workers who have done task t.
Problem Description. The crowdsourced POI labelling prob-
lem aims to deduce the correct labels for each POI. We use
accuracy to evaluate the crowdsourced framework, which is the
average percentage of accurately deduced1 labels (returned by
an algorithm) among all labelling tasks, i.e.

accuracy =
1

|T |
·
∑
ti∈T

Nti
|Lti |

, (1)

where Nti is the number of labels that an algorithm accurately
reports for task ti. For example, assuming |Lti |=10 for task
ti and the first 3 labels are the true labels; if an algorithm
identifies the 1st and 4th label as the correct ones, then Nti= 7.

There are two sub-problems to study in achieving a high-
quality crowdsourced POI labelling. (1) The result inference
problem: given the answer set R from workers, how to infer
the correct labels for each POI? (2) The task assignment
problem: when a set W of available workers request tasks,
how to assign h proper tasks to each worker? Since we
cannot predict online workers in future and optimize the
overall accuracy at once, we alternately maximize the accuracy
improvement for the current workers W . Thus we can achieve
an optimized accuracy step by step until the given budget runs
out. Next we give the formal definition.

Definition 1 (Crowdsourced POI Labelling): Given a set of
tasks T and a budget B, the Crowdsourced POI Labelling
repeats the following two steps:
(1) Label Inference: when workers submit answers, infer the
true labels for all tasks based on workers’ answer set R;
(2) Task Assignment: when workers request tasks, find an
optimal assignment A(W ) to maximize the improvement of
overall accuracy, if the budget does not run out.

III. INFERENCE MODEL
In this section, we propose an inference model to infer the

labels of POIs given the current answer set R returned from
workers. We first introduce our intuitions, then describe the
details of the model, and finally discuss how to compute the
parameters in our model.

1We consider both correct and incorrect labels in computing accuracy.
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A. Model Overview

(1) Worker Quality. It includes two parts. (i) Worker’s
Inherent Quality. Workers have diverse quality due to their
ability and background knowledge. The workers with low
inherent quality, such as spammers and workers without any
knowledge about the POIs, are error-prone to answer the tasks.
(ii) Distance-aware Quality. The quality of a worker on a POI
is also influenced by the distance between the POI and the
worker. Intuitively, a worker can give more accurate answers
to nearby tasks than distant tasks, as workers are usually
more familiar with nearby POIs. Apparently, this influence of
distance varies for different workers. In general, some workers
only have good knowledge for a few POIs, so they can give
accurate answers only for nearby POIs. On the contrary, some
workers may be less sensitive to the distance, and they may
provide accurate answers even if the distance is large.
(2) POI-Influence. We also need to consider the influence of a
POI that can affect the labelling quality. On the one hand, some
POIs are famous and have large influences, and they are easy
to receive correct answers as most workers have background
knowledge on them. On the other hand, some POIs have small
influences, and only nearby workers may know the POIs. For
example, Beijing Olympic Park should have a larger influence
than Beijing Botanical Park.

B. Model Details

To model the quality of a worker and the influence of POIs,
we propose a probability model. In the probability model,
both the worker quality and the POI-influence are modeled
by parameters of random variables. We first describe the
model and then introduce how to estimate these parameters
in Section III-C.
Result Modeling. Since the ground truth of a label is un-
known, we use a binary random variable zt,k to represent the
true result of label lt,k. If lt,k is a correct label of a POI
Ot, zt,k = 1; otherwise zt,k = 0. zt,k satisfies a Bernoulli
distribution where P (zt,k = 1) denotes the probability that
lt,k is a correct label. We use P (zt,k) to infer the true result
for lt,k, and if P (zt,k = 1) ≥ 0.5, we infer lt,k as a correct
label of task t.
Worker’s Inherent Quality. We use a random variable iw to
represent the inherent quality of worker w, which is a binary
variable: iw = 1 if w is a well-qualified worker; iw = 0 if
w is an unqualified worker (e.g. a spammer, an irresponsible
worker, or worker without good knowledge on all POIs). iw
satisfies the Bernoulli distribution, i.e., P (iw = 1) and P (iw =
0) = 1 − P (iw = 1) represent the probability that w is a
qualified and an unqualified worker respectively.

Definition 2 (Worker’s Inherent Quality): We define the in-
herent quality of a worker w as

WQw = P (iw). (2)

A higher WQw derives a better inherent quality of worker w.
Distance-Aware Quality. Let d(w, t) denote the normalized
euclidean distance between a worker w and a task t (0 ≤
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d(w, t) ≤ 1). 2. A smaller d(w, t) derives a larger probabil-
ity that w correctly answers t. Any function satisfying this
property can be used to compute the distance-based quality.
Here we take the bell-shaped function as an example and our
techniques are applicable to any other functions.

Definition 3 (Bell-Shaped Function):

fλ(d(w, t)) =
1 + e−λ·d(w,t)

2

2
, (3)

where λ is a parameter to control the decrease degree of the
function value with the increase of distance d(w, t). If λ is
large, then the quality decreases quickly with the increase of
distance. For example, Figure 4 shows three functions with λ
of 100, 10 and 0.1 respectively. If λ = 100, then the quality
becomes 0.5 when the distance is 0.2. On the contrary, if λ =
0.1, the quality is still above 0.9 when the distance is 1.0.

The reason that we use the bell-shaped function is threefold:
(i) we aim to model the quality as the probability that the
worker gives correct answers, and the function value is within
[0,1] which is coincident with probability values. Moreover,
we set the minimum value of the quality as 0.5, because the
worst probability for a worker is to randomly give an answer,
which is 0.5. (ii) The function decreases exponentially with
the increase of distance. (iii) The decrease rate can be well
controlled by the parameter λ.

However, simply using a single distance function with an
unknown parameter λ has two limitations. First, the expres-
siveness of modeling the quality with a single function is
weak, because the quality may coincidentally regress around a
single function. Second, it is difficult to learn the non-random
variable parameter λ in a probability model, because there is
no closed-form solution to compute λ directly. To address these
problems, we propose the distance function set and use it to
model the distance-aware quality.

Definition 4 (Distance-Function Set): The distance func-
tion set F consists of a set of bell-shaped functions with fixed
parameters λ1, λ2, . . . , λ|F|, i.e.,

F = {fλ1
, fλ2

, . . . , fλ|F|}. (4)

For example, Figure 4 shows a distance function set with
F = {f100, f10, f0.1}.

Definition 5 (Distance-aware Quality): The distance-aware
quality of a worker w on a task t is a combination of distance
functions, i.e.,

2d(w, t) is normalized by a maximum distance (e.g. the maximum distance
between POIs). Note that a worker may submit multiple locations for POI
labelling tasks, e.g., home, office, intertested zones. To this end, we measure
the distance by using the minimum distance from his locations to tasks as we
assume the worker may be familiar with nearby POIs around all his locations.
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w1 t1:[1,1,0], t4:[1,0,0] 0.89 [0.07,0.12,0.81] t1 [0.64,0.64,0.35] [0.10,0.21,0.69]

w2 t2:[1,1,0], t3:[1,1,0] 0.93 [0.04,0.09,0.87] t2 [0.72,0.72,0.25] [0.04,0.06,0.90]

w3 t2:[1,1,0], t3:[1,0,0] 0.93 [0.05,0.06,0.89] t3 [0.71,0.49,0.28] [0.06,0.07,0.87]

w4 t2:[0,0,0], t4:[0,1,1] 0.19 [0.41,0.40,0.19] t4 [0.59,0.40,0.40] [0.24,0.24,0.52]

Fig. 3. A Running Example

DQw =
∑
fλi∈F

P (dw=fλi) · fλi(d(w, t)), (5)

where dw is a random variable which satisfies a multinomial
distribution over the set and P (dw = fλ) can be treated as
the weight of fλ in the function set. Since different workers
have different distributions, dw clearly reflects the different
influence of distance towards workers’ qualities. For example,
for the distance function set in Figure 4, if P (dw = f100) =
0.6, P (dw = f10) = 0.2, P (dw = f0.1) = 0.2, then w
can possibly provide accurate answers only for nearby POIs.
Otherwise, if P (dw = f100) = 0.2, P (dw = f10) = 0.2,
P (dw = f0.1) = 0.6, then w is able to provide accurate
answers for distant POIs. In Figure 4, if P (dw = f100) =
P (dw = f10) = P (dw = f0.1) = 1

3 , then the distance-aware
quality is shown as the dash line in the figure.
POI-Influence. Similarly, we model the POI-influence based
on the distance function set.

Definition 6 (POI-Influence Quality): We define the POI-
influence quality IQt as a combination of distance functions

IQt =
∑
fλi∈F

P (dt = fλi) · fλi(d(w, t)). (6)

where dt is also a random variable with multinomial distribu-
tion over the set and P (dt = fλi) is the weight of fλi in the
function set for dt. For the distance function set in Figure 4,
if a POI has a large influence, then P (dt = f0.1) is large and
P (dt = f100) is small.
Answer Accuracy. Given a task t and a worker w, suppose
w returns rw,t,k for label lt,k, we model the accuracy of the
answer rw,t,k as the probability of rw,t,k being a true result
zt,k. We consider two cases to compute the probability.

Case 1: if w is an unqualified worker, i.e., iw = 0, then w
randomly gives a 1/0 answer with a probability of 0.5 to be
the true result. Therefore, we have

P (rw,t,k = zt,k | iw = 0) = 0.5. (7)

Case 2: if w is a well qualified worker, the probability of
rw,t,k being a correct label is determined by both the distance-
aware quality of w and POI-influence, which can be computed
as their linear combination with the following equation:

P (rw,t,k=zt,k|iw=1) = α ·
∑
fλi∈F

P (dw=fλi) · fλi(d(w, t))

+(1− α) ·
∑
fλi∈F

P (dt=fλi) · fλi(d(w, t)),

(8)

where we use a constant α (e.g. 0.5) to tune the weight of
distance-aware quality and POI-influence.

zt,kdt

iw dw

rw,t,k

w ∈W

L

t ∈TLt

Lt

Fig. 5. Inference Model

Combining these two cases, we generate the probability of
rw,t,k being a true result zt,k:

P (rw,t,k=zt,k) = P (rw,t,k=zt,k|iw=0) · P (iw=0)

+P (rw,t,k=zt,k|iw=1) · P (iw=1).
(9)

In summary, the accuracy of an answer rw,t,k is determined
by w’s inherent quality and distance-aware quality, as well as
the POI-influence. Next we use a graphical model to formally
define our model.
Graphical Probability Model. We show the graphical descrip-
tion of our model in Figure 5. Each node (i.e., zt,k, iw, dw, dt,
and rw,t,k) in the graph represents a random variable and the
shaded node rw,t,k indicates the corresponding answers given
by workers. The arrows from zt,k, iw, dw, dt to rw,t,k indicate
that rw,t,k is generated based on a distribution conditioned on
zt,k, iw, dw, dt. The generative process of rw,t,k is as follows:
• For each task t:

◦ For each label lt,k: Generate zt,k with a Bernoulli
distribution

◦ Generate dt with a multinomial distribution
• For each worker t:

◦ Generate iw with a Bernoulli distribution
◦ Generate dw with a multinomial distribution

• For each answer rw,t,k:
◦ Generate rw,t,k with the distribution P (rw,t,k|zt,k)

Notice that the distribution P (rw,t,k|zt,k) is related to the value
of zt,k, iw, dw and dt. In fact, it is a simple deduction of the
modeled answer accuracy introduced in Equation 9:

P (rw,t,k=1|zt,k)=P (rw,t,k=zt,k=1) · P (zt,k=1)

+P (rw,t,k6=zt,k=0) · P (zt,k=0),

P (rw,t,k=0|zt,k)=1− P (rw,t,k=1|zt,k).

(10)

To this end, we can estimate the true results of labels
(P (zt,k)), the worker quality (P (iw), P (dw)) and the POI-
influence (P (dt)) by learning the model. Moreover, given a
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worker w and a task t, we can estimate the accuracy of
the answer as P (zt,k = rw,t,k) based on Equation 9. We
call P (zt,k), P (iw), P (dw), P (dt) as the parameters of our
model and next we introduce how to estimate them with an
Expectation Maximization (EM) [6] method in Section III-C.

Example 1: Consider the example in Figure 3. We have four
workers and four tasks, whose locations are shown in the left
figure. Each worker has done two tasks in the right table.
We show the estimated parameters in the table, which can
be derived by running the EM method (see Section III-C). We
find that w2 and w3 have the best inherent quality and strong
distance-based quality (i.e. the distance can hardly affect their
quality). On the other hand, w4 has a low-inherent quality
and weak distance-based quality. This result is coincident with
the workers’ answers to tasks as w4 always gives conflicting
answers to the other workers for tasks t2 and t3. The inference
results of t1, t2, t3, t4 are in column P (zt,k = 1) and their POI-
influences are in column P (dt). Based on the estimated pa-
rameters and Equation 9, we can estimate the probability of w2

giving accurate answers to t4 as P (zt4,k = rw2,t4,k) = 0.87.
C. Parameter Estimation

We use the maximum likelihood estimation (MLE) to esti-
mate the parameters. As all the workers’ answers (rw,t,k) are
independent, it aims to maximize

argmaxzt,k,iw,dw,dt
∏
t,w,l

P (rw,t,k)

=
∏
t,w,l

∑
zt,k,iw,dw,dt

P (rw,t,k|zt,k, iw, dw, dt)P (iw)P (zt,k)P (dw)P (dt)

(11)
As the likelihood function follows a sum-product form, the

parameters cannot be directly obtained from its derivation.
Thus we utilize an EM method [6], which iteratively estimates
the parameters through E-step and M-step.
E-step. It assumes all the values of parameters as known and
computes the conditional probability of unobserved variables
over observed ones. In our model, we need to consider four
cases as iw = 0/iw = 1 and zt,k = 1/zt,k = 0 follow different
distributions. The conditional probability is computed as
P (zt,k, iw, dw, dt|rw,t,k)

∝ P (rw,t,k|zt,k, iw, dw, dt)P (iw)P (zt,k)P (dw)P (dt)

Case 1: For iw = 0 and zt,k = 0, we have
P (zt,k, iw, dw, dt|rw,t,k)

∝ P (rw,t,k=zt,k|iw=0)P (zt,k)P (iw)P (dw)P (dt)

Case 2: For iw = 0 and zt,k = 1, we have
P (zt,k, iw, dw, dt|rw,t,k)

∝ P (rw,t,k 6= zt,k|iw=0)P (zt,k)P (iw)P (dw)P (dt)

Case 3: For iw = 1 and zt,k = 0, we have
let q(dw, dt) = αfdw(d(w, t)) + (1− α)fdt(d(w, t)),

P (zt,k, iw, dw, dt|rw,t,k)

=q(dw, dt)1-rw,t,k(1-q(dw, dt))rw,t,kP (zt,k)P (iw)P (dw)P (dt)

Case 4: For iw = 1 and zt,k = 1, we have
P (zt,k, iw, dw, dt|rw,t,k)

∝ q(dw, dt)rw,t,k(1-q(dw, dt))1-rw,t,kP (zt,k)P (iw)P (dw)P (dt)
(12)

M-step. It estimates the parameters by maximizing the expec-
tation of the log-likelihood of all the variables, i.e.

maximize
∑
t,w,l

E[P (zt,k,iw,dw,dt|rw,t,k)] lnP (rw,t,k, zt,k, iw, dw, dt)

(13)
where E is the expected log-likelihood.

By setting the derivation of the log-likelihood on all pa-
rameters as zero, P (zt,k), P (iw), P (dw), P (dt) can then
be deduced as the respective marginal distribution over the
conditional distribution P (zt,k, iw, dw, dt|rw,t,k). Thus we can
simply estimate them by summing up other parameters in
P (zt,k, iw, dw, dt|rw,t,k). Formally, we have

P (zt,k) =

∑
w∈W (t)

∑
iw,dw,dt

P (zt,k, iw, dw, dt|rw,t,k)

|W (t)|

P (iw) =

∑
t∈T (w)

∑
lt,k∈Lt

∑
zt,k,dw,dt

P (zt,k, iw, dw, dt|rw,t,k)∑
t∈T (w) |Lt|

P (dw) =

∑
t∈T (w)

∑
lt,k∈Lt

∑
zt,k,iw,dt

P (zt,k, iw, dw, dt|rw,t,k)∑
t∈T (w) |Lt|

P (dt) =

∑
t∈T (w)

∑
lt,k∈Lt

∑
zt,k,iw,dw

P (zt,k, iw, dw, dt|rw,t,k)∑
t∈T (w) |Lt|

(14)

Time Complexity. For each iteration, the algorithm computes
the conditional probability for all answers in E-step and re-
uses them in M-step with cost O(B ·|Lt|), where B is the total
number of answers. Suppose the total number of iterations is
I, then the time complexity of the EM method is O(B ·|Lt|·I).

D. Model Update
When a worker returns an answer, we need to update the

parameters. It could be expensive to run the EM algorithm for
every answer submission. Therefore, we update the model in
two ways. First, we can use the complete EM algorithm in a
delayed manner, e.g., we run the complete EM algorithm only
if there are 100 submissions. Second, during each interval,
we utilize the incremental EM algorithm [18] to update the
parameters. The incremental EM algorithm only updates the
quality of the workers who have done the task, and updates
both the inferred results and the POI-influence for those tasks
that have been assigned to the worker (Equations 12 and 14).

IV. TASK ASSIGNMENT
In this section, we study how to assign appropriate tasks to

available workers in W that ask for tasks. For each task, we
consider how much accuracy will be improved if it is assigned
to some workers in W . Then we select the best tasks for each
worker to maximize the accuracy improvement.

A. Assignment Overview
In our model, P (zt,k) is used to infer the result of lt,k. If

the true result of lt,k is 1 (i.e., zt,k ≡ 1), the accuracy of our
inference is P (zt,k = 1); if the true result is 0 (i.e., zt,k ≡ 0),
the accuracy of our inference is P (zt,k = 0).
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Formally we denote Acct,k as the accuracy of our inference
on a label lt,k, where

Acct,k =

{
P (zt,k = 1) zt,k ≡ 1

P (zt,k = 0) zt,k ≡ 0.
(15)

In task assignment, if the task t is assigned to a set of new
workers, denoted by Ŵ (t) ⊆ W , Acct,k will change as the
answer set of t changes. Let Acct,k(Ŵ (t)) denote the accuracy
of t after workers in Ŵ (t) submit their answers. Intuitively, we
will assign t to workers in Ŵ (t) if the accuracy improvement
(i.e., ∆Acct,k(Ŵ (t)) = Acct,k(Ŵ (t)) − Acct,k) is large.
Thus we need to know how much quantity Acct,k(Ŵ (t)) will
change if t is assigned to Ŵ (t). To address this problem, we
first discuss how to estimate the accuracy Acct,k(Ŵ (t)) in
Section IV-B. As the accuracy Acct,k(Ŵ (t)) is dependent on
the true result of lt,k (which is not known to us), we use
its expected accuracy improvement instead, and then propose
an assignment algorithm to maximize the expected accuracy
improvement in Section IV-C.
B. Accuracy Estimation

We discuss how to predict the accuracy of a task if the task
is assigned to some workers.
Estimation for a Single Worker. We first consider the case
that t is assigned to a single worker w, i.e., Ŵ (t) = {w}. Let
Acct,k(w) denote the inferred accuracy after the answer rw,t,k
from worker w on task lt,k is submitted. Next we introduce
how to estimate Acct,k(w).

Since Acct,k(w) is based on the result of lt,k, we need to
consider the case zt,k ≡ 1 and zt,k ≡ 0 separately.
(1) For the case zt,k ≡ 1, we can derive Acct,k(w) = P (zt,k =
1|rw,t,k), where P (zt,k = 1|rw,t,k) is the inference result after
lt,k is answered by w with the answer rw,t,k. Based on our
inference model in Equation 14, we have

P (zt,k=1|rw,t,k)=

∑
w∈W (t)∪{w}

∑
iw,dw,dt

P (zt,k=1, iw, dw, dt|rw,t,k)

|W (t)|+ 1

=

|W (t)| · P (zt,k=1)+
∑

iw,dw,dt

P (zt,k=1, iw, dw, dt|rw,t,k)

|W (t)|+ 1

=
|W (t)| · P (zt,k=1)+P (zt,k=1|rw,t,k)

|W (t)|+ 1
.

To compute P (zt,k = 1|rw,t,k), we need to know the exact
value of rw,t,k. If rw,t,k = 1, we have rw,t,k = zt,k; otherwise,
zt,k 6= rw,t,k. To conclude we have

P (zt,k = 1|rw,t,k) =

{
P (zt,k=rw,t,k) rw,t,k = 1

P (zt,k6=rw,t,k) rw,t,k = 0,

where P (zt,k=rw,t,k) (or P (zt,k 6= rw,t,k)) is the answer
accuracy estimated based on our model in Equation 9 3.

3If w is a new worker or t has not been answered by any worker, we
cannot compute P (zt,k=rw,t,k) based on current inference. To handle those
workers or tasks, we simply assume they have the best worker quality (e.g.,
P (iw = 1) = 1, P (dw = f0.1) = 1) and the largest POI-influence (e.g.,
P (dt = f0.1) = 1) as we aim to estimate their “real” quality as soon as
possible by giving priorities for those workers and tasks on task assignment.

As rw,t,k cannot be obtained before assignment, we can
only compute the expected value of P (zt,k = 1|rw,t,k). If
P (zt,k ≡ 1), then P (rw,t,k = 1) = P (rw,t,k = zt,k) and
P (rw,t,k = 0) = P (rw,t,k 6= zt,k), thus we have

PE(zt,k=1|rw,t,k)=P (zt,k=1|rw,t,k=1)P (rw,t,k=1)

+ P (zt,k=1|rw,t,k=0)P (rw,t,k=0)

=
|W (t)| · P (zt,k=1)+P (zt,k=rw,t,k)

|W (t)|+1
· P (zt,k=rw,t,k)

+
|W (t)| · P (zt,k=1)+P (zt,k6=rw,t,k)

|W (t)|+1
· P (zt,k6=rw,t,k).

(16)

(2) For the case zt,k ≡ 0, similarly Acct,k(w) = P (zt,k =
0|rw,t,k) and the expected value of P (zt,k = 0|rw,t,k) is

PE(zt,k = 0|rw,t,k) =

|W (t)| · P (zt,k=0)+P (zt,k=rw,t,k)

|W (t)|+1
· P (zt,k=rw,t,k)

+
|W (t)| · P (zt,k=0)+P (zt,k6=rw,t,k)

|W (t)|+1
· P (zt,k6=rw,t,k).

(17)

To conclude, we compute Acct,k(w) as the expected prob-
ability of P (zt,k = 1|rw,t,k) and P (zt,k = 0|rw,t,k) with the
following equation:

Acct,k(w) =

{
PE(zt,k = 1|rw,t,k) (zt,k ≡ 1)

PE(zt,k = 0|rw,t,k) (zt,k ≡ 0)

=
|W (t)| ·Acct,k + P (zt,k=rw,t,k)

|W (t)|+ 1
· P (zt,k=rw,t,k)

+
|W (t)| ·Acct,k + P (zt,k6=rw,t,k)

|W (t)|+ 1
· P (zt,k6=rw,t,k).

(18)

Example 2: Consider the first label lt4,1 of task t4 in
Figure 3. Based on our current inference we have P (zt4,1 =
1) = 0.59, P (zt4,1 = 0) = 0.41. Suppose t4 is assigned to w2,
the estimated accuracy of w2 to t4 is P (zt4,1 = rw2,t4,1) =
0.87. To calculate the estimated accuracy, if zt,k ≡ 1, then
PE(zt4,1 = 1|rw2,t,1) = 2×0.59+0.87

2+1 × 0.87 + 2×0.59+0.13
2+1 ×

0.13 = 0.65. Similarly if zt,k ≡ 0, PE(zt4,1 = 0|rw2,t,1) =
2×0.41+0.87

2+1 × 0.87 + 2×0.41+0.13
2+1 × 0.13 = 0.53.

Estimation for Multiple Workers. We discuss how accuracy
changes when more than one worker give answers to lt,k. We
first prove that the sequence of workers’ answers to lt,k do not
affect the estimated accuracy with the following lemma:

Lemma 1: Let Acct,k(w1, w2) denote the accuracy of
lt,k after w1 and w2 give answers to lt,k. We have
Acct,k(w1, w2) = Acct,k(w2, w1)

Proof: See appendix.
Based on Lemma 1, when more than one worker give

answers to lt,k, its accuracy stays the same regardless of the
sequence of answers. Suppose t is assigned to a set of workers
Ŵ (t), we do not need to consider the sequence of these
workers. Next we introduce how to estimate Acct,k(Ŵ (t)).

Recall that Acct,k(Ŵ (t)) is an expected probability based
on the value of rw,t,k (w ∈ Ŵ ). To compute Acct,k(Ŵ (t)),
we have to enumerate all possible combinations of rw,t,k
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with O(2|Ŵ (t)|) time. Fortunately we find that Acct,k(Ŵ (t))
satisfies the following recursive property (Lemma 2) and
thereby Acct,k(Ŵ (t)) can be calculated in linear time.

Lemma 2: Acct,k(Ŵ (t)) can be recursively computed by
Acct,k(Ŵ (t)− {w}) as

Acct,k(Ŵ (t))=

{
PE(zt,k = 1|Ŵ (t)) (zt,k ≡ 1)

PE(zt,k = 0|Ŵ (t)) (zt,k ≡ 0)

=
(|W (t)|+|Ŵ (t)|-1) ·Acct,k(Ŵ (t)-{w})P (zt,k=rw,t,k)

|W (t)|+|Ŵ (t)|
P (zt,k=rw,t,k)

+
(|W (t)|+|Ŵ (t)|-1) ·Acct,k(Ŵ (t)-{w})+P (zt,k6=rw,t,k)

|W (t)|+|Ŵ (t)|
P (zt,k6=rw,t,k),

(19)

where w is an arbitrary worker in Ŵ (t).
Proof: See appendix.

Based on Lemma 2, we can estimate Acct,k(Ŵ (t)) in linear
time O(Ŵ (t)). Suppose Ŵ (t)={w1, w2, . . . , w|Ŵ (t)|}, we can
first compute Acct,k(w1), then compute Acct,k(w1, w2) based
on Acct,k(w1) with O(1) time and repeat the computation until
we get Acct,k(w1, w2, . . . , w|Ŵ (t)|).

Example 3: Consider the first label lt4,1 of task t4
in Figure 3. If both workers w2 and w3 give answers
to t4, we have PE(zt4,1 = 1|rw2,t,1) = 0.65 and
PE(zt4,1 = 0|rw2,t,1) = 0.53. Based on our inference
model, the estimated accuracy of w3 to t4 is P (zt4,1 =
rw3,t4,1) = 0.86. Thus if zt,k ≡ 1, PE(zt4,1 =
1|rw2,t,1, rw3,t,1) = 0.65×3+0.86

4 ×0.86+ 0.65×3+0.14
4 ×0.14 =

0.69. Similarly, PE(zt4,1 = 0|rw2,t,1, rw3,t,1)= 0.53×3+0.86
4 ×

0.86+ 0.53×3+0.14
4 × 0.14=0.61.

C. Optimal Task Assignment
Optimal Task Assignment Problem. Based on the estimated
accuracy, next we introduce the optimal task assignment
problem. For the available worker set W , our goal is to
find an assignment A(W ) to maximize the overall accuracy
improvement. However, as the accuracy Acct,k depends on
the true result of lt,k for which we do not know, we com-
pute an expected accuracy improvement based on the current
probability of zt,k. The expected accuracy improvement is

∆Acct,k(Ŵ (t))=P (zt,k=1) · (PE(zt,k=1|Ŵ (t))− P (zt,k=1))

+P (zt,k=0) · (PE(zt,k=0|Ŵ (t))− P (zt,k=0)).
(20)

Formally, we define the optimal task assignment problem.
Definition 7 (Optimal Task Assignment): The optimal task

assignment is to find an assignment that maximizes the overall
expected accuracy improvement, i.e.,

argmaxA(w),w∈W
∑
t∈T

|Lt|∑
k=1

∆Acct,k(Ŵ (t))

s.t. |A(w)| = h

(21)

where A(w) is the set of h tasks assigned to worker w, and
Ŵ (t) = {w|t ∈ A(w)} is the set of workers assigned with t.

Algorithm 1: GreedyAssignment
Input: W : a set of available workers for tasks.
Output: A(W ): assigned tasks for workers in W .
A(W ) = {A(w) = ∅ | w ∈W};1
foreach t ∈ T do2

Ŵ (t) = ∅;3

foreach w ∈W do4
foreach t ∈ T do5

for k = 1 to |Lt| do6
Acc[w][t][k] = Acct,k(w);7

∆Acc[w][t] =
|Lt|∑
k=1

∆Acct,k(w);
8

while |A(W )| < h · |W | do9
tmax, wmax = arg maxt,w ∆Acc;10
A(wmax).append(tmax);11

Ŵ (tmax).append(wmax);12
∆Acc[wmax].remove(tmax);13
if |A(wmax)| ≥ h then14

∆Acc.remove(wmax);15

foreach w ∈W − Ŵ (tmax) do16
for k = 1 to |Lt| do17

Acc[w][t][k] = Acct,k(Ŵ (t) ∪ {w});18

∆Acc[w][tmax] =
|Lt|∑
k=1

∆Acct,k(Ŵ (tmax) ∪ {w});
19

return A(W );20

Unfortunately, we find the problem of finding the optimal
assignment to maximize the increase of accuracy is NP-hard
(Lemma 3). Then we propose a greedy algorithm.

Lemma 3: The Optimal Assignment Problem is NP-hard.
Proof: See Appendix.

A Greedy Algorithm. The algorithm greedily picks a pair
(task, worker) with maximum increase of accuracy until each
worker in W has been assigned h tasks. Algorithm 1 shows
the details of the algorithm. It first initializes A(W ) and
Ŵ (t) as empty set (lines 1-3). Then it computes all the
estimated accuracy and keeps them in a matrix Acc, where
Acc[w][t][k] is Acct,k(w) computed in Equation 18 (line 7).
Notice that in practice, Acc[w][t][k] stores a pair of values
(PE(zt,k = 1|rw,t,k), PE(zt,k = 0|rw,t,k)). Meanwhile, it
also initializes a matrix ∆Acc to record all the accuracy
improvement, where ∆Acc[w][t] is the accuracy improvement
∆Acct,k(Ŵ (t)) computed in Equation 20 if t is assigned to w
(line 8). At each iteration, we pick the pair of worker and task
(wmax, tmax) with the maximum accuracy improvement from
matrix ∆Acc and put them into A(W ) and Ŵ (t) (lines 10-
13). If h tasks have been assigned to worker wmax, it removes
wmax from the matrix ∆Acc (line 15) to avoid duplicate
assignments. As workers in Ŵ (tmax) have been assigned with
tmax, for the rest workers in W −Ŵ (tmax), we update matrix
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Acc and ∆Acc for tmax by assuming that w is further assigned
with tmax (line 18-19). The algorithm terminates when all
workers have been assigned with h tasks.
Time Complexity. To initialize the matrices of Acc and ∆Acc,
we need to compute the estimated accuracy for each (worker,
task) pair, the cost is O(|W | · |T | · |Lt|). At each iteration, we
update Acc and ∆Acc of tmax for every worker, and the cost
is O(|W | · |Lt|). As the total number of iterations is h · |W |,
the time complexity is O(|W | · |T | · |Lt|+ h · |W |2 · |Lt|).

Example 4: Consider the example in Figure 3. Suppose
W = {w2} and h = 1, for label lt4,1, we have computed
PE(zt4,1 = 1|rw2,t,1) = 0.65 and PE(zt4,1 = 0|rw2,t,1) = 0.53
in Example 2. Therefore, its expected accuracy improvement
is ∆Acct4,1(w2) = 0.59 × (0.65 − 0.59) + 0.41 × (0.53 −
0.41) = 0.08. Similarly, we can compute ∆Acct4,2(w2) =
∆Acct4,3(w2) = 0.08. The greedy algorithm will first assign
t4 to w2 as it provides maximum accuracy improvement. It
can be seen that it is beneficial to assign t4 to w2. The reason
is that previous workers w1 and w4 have returned completely
different answers on t4, while w2 can provide high-quality
answers to improve inference. Our algorithm can judiciously
capture this through maximizing the accuracy improvement.

V. EXPERIMENTAL STUDY

A. Experiment Setup
Datasets. We used two real datasets called Beijing and
China as our task sets. The Beijing dataset contained
200 POIs with their locations in Beijing, including parks,
universities, restaurants, etc. The China dataset contained 200
scenic spots in China, e.g. “Tiananmen Square”, “Oriental
Pearl Tower”, etc. For each task, we set the number of
labels |Lt| = 10. To generate correct labels as the ground
truth, we collected labels from Dianping4. For each task, we
randomly selected 1∼10 correct labels and manually checked
their correctness and then complemented the label set with
incorrect labels. Beijing and China contained 927/1073
and 864/1136 correct/incorrect labels respectively.
Experiment Deployment. We conducted our experiment on
ChinaCrowds5, the largest Chinese crowdsourcing platform. It
had mobile applications which supported location-based tasks
by locating workers with GPS equipment. In our experiment,
workers were asked to select and submit one or several familiar
locations with geo-coordinate to do the POI labelling tasks.
We deployed two parts of experiments and used 1000 budget
(0.2 RMB for each task) for each dataset. For each assignment,
we assign h=2 tasks to each worker.
Deployment 1 - Evaluation of inference models. The tasks were
published on the platform and each task was answered by five
workers. Then we analyzed the quality of workers (influence
of POIs) and compared our inference model with baselines
(as described later) based on the collected 2000 assignments.
Deployment 2 - Evaluation of task assignments. We adopted
the developer mode in ChinaCrowds, enabling us to assign
specific tasks to those workers based on our own developed
assignment algorithms when online workers requested tasks.

4http://www.dianping.com/
5http://www.chinacrowds.com/
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Fig. 8. Impact of Distance on the POI-Influence

Baselines. For evaluation of inference models, we compared
our Inference Model (IM) with two widely used baselines: (1)
the Majority Voting (MV) method and (2) the Expectation-
Maximization (EM) algorithm [5]. MV determined the labels
based on the majority answers from workers. EM iteratively
estimated each worker’s quality (confusion matrix) and ex-
ploited the estimated quality to infer the correct labels. To
evaluate the task assignment algorithms, we compared our
ACCOPT with (1) RANDOM and (2) a Spatial-First assignment
algorithm (SF). The RANDOM algorithm randomly assigned
tasks to online workers. The SF algorithm optimized the
distance between workers and tasks. For each online worker
w, it assigned the closest undone task(s) to w.

We implemented all the methods in Python and ran exper-
iments on a Ubuntu machine with 16GB RAM, Intel Xeon
CPU 2.93GHz. We set α=0.5, F = [f0.1, f10, f100] for IM.
Evaluation Metrics. We evaluated the effectiveness and ef-
ficiency of our proposed methods in term of the accuracy
(described in Sec. II) and running time respectively.

B. Data Analysis
We first analyzed the collected answers to verify our in-

tuitions. For each answer, we computed its accuracy as the
percentage of correctly answered labels over the ground truth,
and reported the average accuracy across all answers.

First, we tested the quality of workers from a general
perspective. To eliminate the impact of distance, we collected
the answers that workers and tasks were within a distance of
0.2 and computed their average accuracy on those answers.
We reported the percentages (with five ranges from [1%,20%]
to [81%, 100%]) of their average accuracy in Figure 6. We
could see that although workers and tasks were very close,
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the quality of workers differed. Most workers returned high-
quality answers for spatially nearby tasks. For example in the
China dataset, most workers returned answers with accuracy
over 60%; however, there were about 20% workers returning
low-quality answers with accuracy under 60%. In our model,
this was attributed to the inherent quality of workers where
the accuracy of answers from those with low inherent quality
was low even when the distance was short.

Next, we tested the impact of the distance on workers’
qualities. We selected the top-5 workers who have done most
tasks and presented their average accuracy w.r.t. the varying
distance in Figure 7 (we divided the distance into 5 ranges,
e.g. if the distance is 0.3, it is in range [0.2, 0.4]). In general,
all workers tended to provide more accurate answers for those
close tasks than the distant ones. Also, the impact of distance
on different workers varied. For example in the China dataset,
when the distance increased from 0.2 to 1.0, wc10 had the best
quality and the accuracy of the answers decreased from 90%
to 60%, while the accuracy of wc15 decreased from 78% to
45%. This can be attributed to the distance-aware quality of
worker in our model: if the worker had better distance-aware
quality, the answers had a higher probability to be correct and
the impact of distance on it was smaller.

We also investigated the impact of distance on different
POIs. To reveal the real influence of POIs, we collected
the count of reviews (from Dianping), based on which we
categorized the POIs into four classes, as shown in Figure 8.
In general, answers on POIs with large influence (i.e. with
more reviews) had better accuracy than those POIs with small
influence. The accuracy also decreased with the increase of
distance. For example in the Beijing dataset, the answers
on POIs with the most reviews (#Review>2500) had the best
average accuracy. When the distance increased from 0 to 0.4,
the impact of distance on it was also minimum as the average
accuracy decreased from 90% to 75%. However, for other POIs
(e.g., those with less than 500 reviews), the accuracy decreased
from 90% to 60%. In our model, the impact of distance on
POIs was attributed to the influence of POI: if the POI had
a larger influence, its answers had a higher probability to be
correct and the impact of distance on it was smaller.

C. Evaluation of the Inference Models
Next, we evaluated the effectiveness of our inference model.

To better illustrate the superiority of our model, we first
demonstrated a case study.
A Case Study. We consider the labelling task on “Beijing
Olympic Forest Park” in the China dataset. The ten answer
labels on it were shown in the 1st column of Table I: the
labels in bold text (i.e. labels 1,2,3,6,8,10) were the correct
labels for this POI, and 4,5,7,9 were the incorrect ones. The
inferred results were shown in the 2nd column. As we can
see, all the ten labels were accurately inferred. In the 3rd, 4th

and 5th columns, we showed the distance and the answers of
each of the five workers. In the 6th column, we computed
the real accuracy of the five workers’ answers based on the
ground truth. In the 7th column, we showed the modeled
accuracy (P (zt,k=rw,t,k)) of each worker on the task based
on our inference model. In the last column, we reported the
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Fig. 9. Accuracy of the Inference Models
average accuracy of the 5 workers based on their answers on all
tasks. Let us take the 10th label as an example for illustration.
Two workers wc5, wc0 returned “yes” while wc24, wc4 and wc19
returned “no”. MV returned incorrect results as the majority
voted “no” for this label. It did not consider any worker quality,
but in the 6th column, wc5 and wc0 had much better accuracy
than wc24, wc4 and wc19. EM also returned incorrect results,
probably because EM measured the workers’ quality based
on their average accuracy. As shown in the 8th column, the
average accuracy of wc19 and wc24 were higher than wc5 and wc0,
so EM preferred to infer results based on their answers.

Both MV and EM ignored the influence of distance on
answer quality, which was captured in our model (IM). For
example, wc5 and wc0 provided high-quality answers as they
were much closer to and more familiar with the task. It can
be seen in the 7th column that IM provided an estimation
accuracy closer to real accuracy than the average accuracy.
That may explain why IM had more accurate inference.
Accuracy. We tested the overall accuracy of the three methods
by varying the budget from 600 to 1000 and presented the
result in Figure 9. We had the following observations: (1) IM
outperformed EM and MV across all budgets. For example,
when the budget was 1000, IM achieved an overall accuracy
of 79%, outperforming EM and MV by 5.2% and 10.1%
respectively. This is because MV did not consider the influence
of workers’ qualities on the results, and EM simply considered
an average quality on workers. However, in the POI labelling
tasks, as shown in Figures 7 and 8, the distance between POIs
and workers had significant impacts on the quality of answers
while EM was unaware of it. Our model achieved the best
performance as we considered both the influence of workers’
inherent qualities and the influence of distances on qualities.
(2) With the increase of budget, the accuracy of all methods
increased. This is because in a healthy crowdsourcing market
we could always receive more correct answers than incorrect
answers, which means that we could always get more closely
inferred answers towards the real results.
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Fig. 10. Convergence of the Inference Models

Convergence. We evaluated the convergence of our model to
compute the parameters (see Sec. III-C). We determined the
convergence based on the maximum variance of parameters,



10TABLE I. A CASE STUDY
POI: Beijing Olympic Forest Park Assignment and Inference Results

1. Labels 2. Inferred Result(P (zt,k=1)) 3. Worker 4. Distance 5. Answer 6. Real Accuracy 7. Modeled Accuracy 8. Average Accuracy
[1] park [2] Olympics [1] 0.99 [2] 0.99 wc24 0.68 [1,2,3,5,6,7] 60% 59% 63%

[3] sports [4] the Fragrant Hill [3] 0.99 [4] 0.14 wc5 0.03 [1,2,3,7,8,10] 80% 78% 53%
[5] palace [6] stadium [5] 0.10 [6] 0.65 wc0 0.01 [1,2,3,6,8,9,10] 90% 97% 63%

[7] business [8] relax zone [7] 0.27 [8] 0.89 wc4 0.54 [1,2,4,5,6] 50% 58% 55%
[9] flag-rising [10] take a walk [9] 0.39 [10] 0.89 wc19 0.68 [1,2,3,4,5,6] 60% 67% 71%
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Fig. 11. Accuracy of Task Assignment Algorithms

i.e. the maximum difference of parameters from the current
iteration to the previous iteration. From Figure 10, we find
that the model converged quickly. If we set the convergence
threshold as 0.005, the method converged in 23 and 12
iterations for Beijing and China respectively.

D. Evaluation of the Task Assignment Algorithms
Next, we evaluated the accuracy of our proposed task assign-

ment algorithms. The accuracy w.r.t. the varying budget was
shown in Figure 11 and more statistics were shown in Table II.
We can see that ACCOPT (RANDOM) achieved the best (worst)
performance. For example, for 1000 budget, ACCOPT achieved
an overall accuracy of 85.1%, outperforming SF and RANDOM
by 4.1% and 8.2% respectively. RANDOM had the worst
performance because it did not consider workers’ qualities
when assigning tasks. The 2nd column of Table II recorded
the average accuracy for all workers. We find that workers
with RANDOM had the worst quality on both datasets. Both
SF and ACCOPT optimized the qualities of workers. However,
SF optimized the quality by simply considering the distance.
In the 3rd column, we divided the tasks into three categories
based on the number of assigned workers: less than 3, between
3 and 7, more than 7; then we recorded the percentage of
these three categories. Note that the spatial distribution of
tasks and workers were not even. For SF, some tasks were
assigned to many workers while some were assigned to only
a few. For example, in the China dataset, 23% of tasks were
only assigned to one or two workers, resulting in only few
answers for inference, thus the accuracy of those tasks could
not be guaranteed. In the 3rd column of Table II, we tested
the average Acct,k for all the labels and ACCOPT achieved the
best value. ACCOPT outperformed SF and RANDOM because
it optimized the overall accuracy improvement (Acct,k) for all
tasks each time. ACCOPT controlled the assignment through
the estimated accuracy, and we can find that the worker quality
in the 1st column was optimized and the number of assigned
workers in the 2nd column was even.

E. Efficiency and Scalability
First, we reported the average running time of the above

inference methods in Figure 12. MV took the least time as it
used the simplest inferring strategy. EM and IM had similar

TABLE II. EVALUATION OF TASK ASSIGNMENT ALGORITHMS

(a) Beijing
Method Worker Quality Percentages of Assigned Workers Average Acct,k
Random 63.7% [7%,78%, 15%] 60.2%

SF 68.4% [22%,55%, 23%] 68.6 %
ACCOPT 69.8% [8%,77%,15%] 74.5%

(b) China
Method Worker Quality Percentages of Assigned Workers Average Acct,k
Random 65.1% [7%,82%, 11%] 65.1%

SF 71.6% [23%,50%, 29%] 70.6 %
ACCOPT 70.1% [10%,78%,12%] 75.1%

elapsed time. For the 1000 number of assignments, IM could
converge around 1 second, which is efficient.

To evaluate the scalability of our approach, we generated
a synthetic dataset of POIs and workers, on which we tested
the inference model and the task assignment algorithm. First
we tested the scalability of our inference model by varying
the number of assignments. Figure 13 presented the inference
time and the number of iterations. With the increase of number
of assignments, we had two observations: (1) The #iterations
grew slowly from 29 to 38 as our model can converge quickly.
(2) The running time of the parameter estimation increased
linearly with the increase of #assignments.

Last we tested the scalability of our task assignment algo-
rithm. In Figure 14(a) we simulated 100 available workers and
tested average running time by varying the number of tasks
from 2000 to 10000. In Figure 14(b) we used 10000 tasks and
varied the number of workers from 20 to 100. We find that our
algorithm scaled well and the average running time increased
linearly w.r.t. the number of tasks and the number of workers.

VI. RELATED WORKS

Spatial Crowdsourcing. Crowdsourcing is now becoming
a new effective method to handle computer-hard tasks. As
many of those tasks contain spatial information (e.g. taking a
photo in a location), spatial crowdsourcing also draws attention
from both industry and research community [4,13,14,20,21].
A common constraint of those spatial tasks is that, they
require workers to finish the tasks by traveling to the marked
locations specified in the task. Thus, the spatial distance
between workers and tasks is treated as the travel cost, which
needs to be considered in the general task objective. Task
assignment algorithms are then proposed to optimize those
objectives [13,14,20,21] and a platform [4] is developed to
specifically support these spatial tasks.

Our work is different from these spatial crowdsourcing
tasks. First, the POI labelling task does not request workers
to travel to specified locations to answer the task. Second, the
optimization goal is different. They focus on minimizing the
travel cost while we aim to improve the inference quality. We
consider the spatial distance as a factor that can affect the
accuracy instead of treating it as a travel cost. Third, they do
not consider the accuracy for task assignment at all but treat
tasks as finished or unfinished; instead we propose various
techniques to optimize the task assignment in term of accuracy.
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Fig. 12. Elapsed Time of Inference On Real Datasets
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Fig. 14. Scalability of Task Assignment

To our best knowledge, this is the first work on how to apply
crowdsourcing methods to POI labelling tasks.
Inference Algorithms. Our work is also related to result
inferences for crowdsourcing tasks, where different workers
give unidentified (e.g. “yes/no”) answers and an inference
method is required to infer the true result of each task. The
general method for result inference is a “voting strategy” which
mainly includes two parts: majority voting [3,15] and Bayesian
voting [5,12,16,24,26,27]. The majority voting strategy returns
the result with the most votings, while the Bayesian voting
strategy computes the probability of the result being each
answer (e.g. the probability that the result being “yes/no”)
based on workers’ qualities. The Expectation Maximization
(EM)-based methods [5,6,12,17,23,24] are the state-of-the-art
approaches to estimate the quality of each worker if the ground
truth cannot be retrieved. It iteratively updates the workers’
qualities and the tasks’ true results until convergence. The un-
derlying intuition is that, the workers who usually give correct
answers will be measured by a high quality and the answer
supported by such high-quality workers will be predicted as
a true result. There have been many applications of the EM-
based methods in deriving the quality of workers [12,17,24].

The inference model proposed in our work is different from
them, as we consider the impact of distance on both workers
and POIs in our model for a better quality estimation and result
inference. Moreover, we consider the optimal task assignment
to improve the overall accuracy based on the inference model.
Task Assignment. Recently, some approaches [2,7,10,11,16,
27] have been proposed to study the task assignment problem.
Liu et al. [2,16] adopts an entropy-like method to select the

tasks with maximum uncertainty for the worker. Zheng et
al. [27] proposes to maximize the evaluation metric-driven
quality improvement in the assignment [6]. Fan et al. [7]
models diverse accuracies of workers on tasks and assigns
tasks to the workers who have high accuracies in answering
the tasks. Some other works [10,11] leverage machine learning
techniques to decide the assigned tasks under different settings.
To summarize, these works only consider how to select the
tasks when a single worker comes but neglect the impact of
distance to worker quality. In contrast, we consider the optimal
task assignment for a set of available workers by considering
both the distance-aware quality and the POI influence, and we
estimate the accuracy improvement if the task will be assigned
to certain workers based on the proposed inference model and
then maximize the overall accuracy for all tasks.

VII. CONCLUSION

In this paper, we studied the crowdsourced POI labelling
problem and proposed a framework with an effective label
inference model and an online task assigner. In particular, we
first proposed a novel model to infer POIs’ labels by con-
sidering the worker’s inherent quality, the worker’s distance-
aware quality and the influence of POIs to labelling tasks. We
proposed an efficient algorithm to compute the parameters in
our model. Then we proposed an optimal task assignment al-
gorithm that can judiciously assign tasks to available workers
by maximizing the accuracy improvement. Experiment results
showed that our approach significantly outperformed state-of-
the-art approaches in accuracy and achieved high efficiency.
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APPENDIX

Proof of Lemma 1. We first consider the case zt,k ≡ 1:

PE(zt,k=1|rw1,t,k, rw2,t,k)

= P (zt,k=1|rw1,t,k=1, rw2,t,k=1)P (rw1,t,k=1, rw2,t,k=1)

+ P (zt,k=1|rw1,t,k=0, rw2,t,k=1)P (rw0,t,k=0, rw2,t,k=1)

+ P (zt,k=1|rw1,t,k=1, rw1,t,k=0)P (rw1,t,k=1, rw2,t,k=0)

+ P (zt,k=1|rw1,t,k=0, rw2,t,k=0)P (rw1,t,k=0, rw2,t,k=0).

Since rw1,t,k and rw2,t,k are independent, we have
P (rw1,t,k, rw2,t,k)=P (rw1,t,k)P (rw2,t,k)=P (rw2,t,k, rw1,t,k),

thus PE(zt,k=1|rw1,t,k, rw2,t,k)=PE(zt,k=1|rw2,t,k, rw1,t,k).

Similarly, for the case zt,k ≡ 0,

PE(zt,k = 0|rw1,t,k, rw2,t,k) = PE(zt,k = 0|rw2,t,k, rw1,t,k).

To conclude, Acct,k(w1, w2) = Acct,k(w2, w1).

Proof of Lemma 2. To simplify the proof, we first prove that
Lemma 2 holds for the simple situation when Ŵ (t)={w1, w2}.

According to the proof of Lemma 1, for the case zt,k ≡ 1:
P (zt,k=1|rw1,t,k=1, rw2,t,k=1)P (rw1,t,k=1)

+P (zt,k=1|rw1,t,k=0, rw2,t,k=1)P (rw1,t,k=0)

=
|W (t)|P (zt,k=1)+P (zt,k=rw1,t,k)+P (zt,k=rw2,t,k)

|W (t)|+2
P (zt,k=rw1,t,k)

+
|W (t)|P (zt,k=1)+P (zt,k6=rw1,t,k)+P (zt,k6=rw2,t,k)

|W (t)|+2
P (zt,k6=rw1,t,k)

=
|W (t)|+1

|W (t)|+2
(
|W (t)|P (zt,k=1)+P (zt,k=rw1,t,k)

|W (t)|+1
P (zt,k=rw1,t,k)

+
|W (t)|P (zt,k=1)+P (zt,k6=rw1,t,k)

|W (t)|+1
P (zt,k6=rw1,t,k)+

P (zt,k=rw2,t,k)

|W (t)|+1
)

=
|W (t)|+1

|W (t)|+2
(PE(zt,k = 1|rw1,t,k)+

P (zt,k=rw2,t,k)

|W (t)|+ 1
)

=
(|W (t)|+ 1)PE(zt,k=1|rw1,t,k)+P (zt,k=rw2,t,k)

|W (t)+2|
.

Similarly, we have

P (zt,k=1|rw1,t,k=1, rw2,t,k=0)P (rw1,t,k=1)

+P (zt,k=1|rw1,t,k=0, rw2,t,k=0)P (rw1,t,k=0)

=
(|W (t)|+1)(PE(zt,k = 1|rw1,t,k)+P (zt,k6=rw2,t,k)

|W (t)+2|
.

To this end, PE(zt,k=1|rw1,t,k, rw2,t,k)

=
(|W (t)|+1)PE(zt,k=1|rw1,t,k)+P (zt,k=rw2,t,k)

|W (t)+2|
P (zt,k=rw2,t,k)

+
(|W (t)|+1)PE(zt,k=1|rw1,t,k)+P (zt,k6=rw2,t,k)

|W (t)+2|
P (zt,k6=rw2,t,k).

Similarly, the equation still holds for the case zt,k ≡ 0. By
aggregating the cases for zt,k ≡ 1 and zt,k ≡ 0, Lemma 2
holds for Ŵ (t) = {w1, w2}.

In general, we can divide an arbitrary Ŵ (t) into w and
Ŵ (t) − {w}. By replacing Ŵ (t) − {w} as w1 and w as w2

into the above proof, we can prove that the equation holds for
any Ŵ (t).

Thus, we can prove the lemma.

Proof of Lemma 3. We prove the NP-hardness by a reduction
from the n-th order knapsack problem (nOKP) [3,8]. An nOKP
is a Knapsack problem aims to maximize:∑

i1

∑
i2

· · ·
∑
in

V [i1, i2, · · · , in]) · x1x2 · · ·xn

where V [i1, i2, · · · , in] is the profit achieved if item
x1, x2, · · ·xn are selected into the knapsack simultaneously.
Consider an instance of optimal task assignment problem with
h = 1. The problem is equivalent to selecting n = |W | items
into the knapsack (where each worker is assigned with one
task) from |W | · |T | tasks simultaneously and the profit is the
overall expected accuracy.

Thus the Optimal Task Assignment Problem is NP-hard.


