
DOCS: A Domain-Aware Crowdsourcing System Using
Knowledge Bases (Technical Report)

Yudian Zheng †, Guoliang Li #∗, Reynold Cheng †
† Department of Computer Science, The University of Hong Kong

#Department of Computer Science, Tsinghua University
ydzheng2@cs.hku.hk, liguoliang@tsinghua.edu.cn, ckcheng@cs.hku.hk

ABSTRACT
Crowdsourcing is a new computing paradigm that harnesses human
effort to solve computer-hard problems, such as entity resolution
and photo tagging. The crowd (or workers) have diverse qualities
and it is important to effectively model a worker’s quality. Most of
existing worker models assume that workers have the same qual-
ity on different tasks. In practice, however, tasks belong to a va-
riety of diverse domains, and workers have different qualities on
different domains. For example, a worker who is a basketball fan
should have better quality for the task of labeling a photo related
to ‘Stephen Curry’ than the one related to ‘Leonardo DiCaprio’.
In this paper, we study how to leverage domain knowledge to accu-
rately model a worker’s quality. We examine using knowledge base
(KB), e.g., Wikipedia and Freebase, to detect the domains of tasks
and workers. We develop Domain Vector Estimation, which ana-
lyzes the domains of a task with respect to the KB. We also study
Truth Inference, which utilizes the domain-sensitive worker model
to accurately infer the true answer of a task. We design an Online
Task Assignment algorithm, which judiciously and efficiently as-
signs tasks to appropriate workers. To implement these solutions,
we have built DOCS, a system deployed on the Amazon Mechani-
cal Turk. Experiments show that DOCS performs much better than
the state-of-the-art approaches.

1. INTRODUCTION
To tackle complex tasks that are hard for computers (e.g., entity

resolution [43, 45] and sentiment analysis [54, 29]), many crowd-
sourcing platforms (e.g., Amazon Mechanical Turk (AMT) [3] and
CrowdFlower [13]) have been recently deployed. These platforms
allow tasks to be performed by a huge number of Internet users
(or workers) with different backgrounds. In AMT [3], for instance,
there are over 500K workers originated from 190 countries [1]. The
increase in the importance of crowdsourcing has attracted a lot of
research attention [27, 19, 16, 53, 15, 54, 23, 18, 8, 50, 24].

However, workers may yield low quality and a core problem in
crowdsourcing is to infer high-quality results from the workers’ an-
swers. Different workers may have diverse qualities, and it is im-
∗Guoliang Li is the Corresponding Author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

portant to accurately model a worker’s quality. An effective worker
model can benefit many important problems in crowdsourcing and
we examine three crucial aspects addressed in existing works [19,
16, 53, 54, 15, 18, 30, 8] that help to infer high-quality results:
• Worker Model: How to represent the quality of a worker that
effectively reflects her skills? Existing works simply treat it as a
real value [19, 16, 53] or a matrix [15, 54].
• Truth Inference: How to obtain the true answer (called truth) of
a task? To improve the quality, a task may be performed by one
or more workers, and thus an important issue is to infer the truth
through aggregating workers’ answers [18, 30, 16, 15].
• Task Assignment: How to assign a task to appropriate workers?
As pointed out by [54, 8, 18], this is often done based on worker
model, which reflects her performance statistics shown in her pre-
vious tasks. Note that the assignment latency is crucial and online
task assignment is required to achieve instant assignment.

A common drawback of existing solutions is that they often over-
look the worker’s ability in different aspects (or domains). As a
matter of fact, workers have a variety of expertise, skills, and cul-
tural backgrounds. Let us consider two workers (A, an NBA fan,
and B, a frequent moviegoer) and two tasks t1 and t2 (which ask
workers to select labels of two photos about Stephen Curry and
Leonardo DiCaprio, respectively). Intuitively, A should do better
than B in the sports domain, while B is a better candidate than A
in doing tasks related to films. Thus, t1 and t2 should be assigned
toA andB respectively. However, existing works often neglect the
domain information (e.g., the qualities of A and B are modeled as
the same values for different tasks [19, 16, 53]).

The issues of incorporating domain knowledge in the crowd-
sourcing process have only been recently studied [18, 30], where
each worker has diverse qualities on different domains. These so-
lutions, while promising, still have room for improvement:
• Worker Model: [18] examines the issues of inferring domains
of workers and tasks. The solution relies on the text descriptions
of tasks – tasks with large text similarity have a higher chance to
be classified into the same domain. However, this solution can re-
sult in wrong domain classification. For example, the two tasks
“Is Stephen Curry a PF?” and “Has Golden State Warriors ever
won championships?” may not be similar (e.g., in terms of Jaccard
similarity), yet they are in the sports domain. On the other hand,
tasks “Compare the height of Stephen Curry and Kobe Bryant.” and
“Compare the height of Mount Everest and K2.” may have a high
text similarity, but they are in different domains (i.e., sports and
mountains, respectively). In [30], machine-learning techniques are
used to compute latent domains of tasks. However, due to the lack
of semantics, these latent domains are hard to interpret, making it
difficult to profile and understand a worker’s ability.
• Truth Inference: In [18, 30], the problem of using domain in-

1

TI: Truth

Inference

DOCS

Crowdsourcing Platforms (e.g., AMT)

tasks

Requester(s)

all workers’ answers for tasks

inferred truth for all tasks

2

3

4

5

tasks (domain vector)

DB workers (worker ID, quality vector)

DVE: Domain

Vector

Estimation

2

OTA!"Online Task

Assignment

inferred truth

worker tasksworker’s answers

4 5 3 522

Knowledge Bases

(e.g., Freebase)

1

1 tasks (with text description)

3 4 1

Figure 1: The Architecture of DOCS.

formation to infer truth has been studied. Typically they exploit a
worker’s diverse qualities on different domains, and then for a task,
it will trust a worker’s answer if the worker has high qualities on the
domains in that task. However, the workers’ qualities are either in-
accurately estimated [30], or incorrectly leveraged to compute each
task’s truth [18]. For example, [30] estimates each task’s latent do-
mains and each worker’s quality for those latent domains together,
thus the estimation of worker’s quality is highly affected by the in-
accurate estimation of task’s domains; [18] uses the weighted ma-
jority voting to infer each task’s truth, which is easy to be misled
by the answers given by multiple low-quality workers.
• Task Assignment: The only work that uses domain information in
task assignment is [18]. However, it adopts a fairly simple task as-
signment method, in which each task is assigned to the same num-
ber of workers, and the difficulty level of a task is not considered.
Moreover, it assigns tasks to a worker such that the worker has the
highest qualities to accomplish, which omits the fact the assigned
tasks may have already obtained confident and consistent answers.

Hence, there is a need of investigating how to make the best use
of domain information in the crowdsourcing process. Our goal is
to study an effective method of utilizing domain information to en-
hance the effectiveness of the three steps above. The main idea is to
consult an existing knowledge base (or KB), such as Wikipedia [47]
and Freebase [20] for obtaining domain information. These KBs
are often associated with a large number of categories/topics in-
formation, organized in a systematic and hierarchical manner. For
example, Freebase [20] contains over 57M concepts, encoded by
3G facts. We have developed a DOmain-Aware Crowdsourcing
System, called DOCS, which taps into this large pool of informa-
tion, learning the domains of workers and tasks explicitly.

Figure 1 shows the architecture of DOCS, which contains three
main modules: Domain Vector Estimation (DVE), Truth Infer-
ence (TI) and Online Task Assignment (OTA). A requester (who
publishes tasks) can specify a set of tasks (with text descriptions)
and a budget in DOCS. Then DOCS interacts with knowledge
bases and crowdsourcing platforms, respectively. Finally after con-
suming the budget, the inferred truth for all tasks are returned to the
requester. Next, we show how the three modules in DOCS work
upon receiving a requester’s tasks.
• DVE. This module is responsible for estimating the related do-
mains of each task, based on the domain information in a KB.
Specifically, an “entity-linking” algorithm [39] can be used, which
extracts entities from the text description of each task. A domain
vector is then computed for these entities, in order to capture how
likely a task belongs to each domain mentioned in a KB.

After computing each task’s domain vector, the tasks are pub-
lished to crowdsourcing platforms (e.g., AMT [3]). By interacting
with the crowd workers, in general, DOCS needs to handle two

types of requests from workers: (1) a worker accomplishes tasks
and submits answers; (2) a worker comes and requests tasks.
• TI. When a worker accomplishes tasks and submits answers, the
module first stores the worker’s answers into database and then in-
fers each task’s truth and each worker’s model based on two prin-
ciples: (1) a worker’s answer is trusted, if she is a domain expert
on her submitted tasks; and (2) a worker is a domain expert if she
often correctly answers tasks related to that domain.
• OTA. When a worker comes and requests new tasks, this module
assigns tasks to her. A poor assignment may not only waste budget
and time, but also hurt the quality of inference results which de-
pend on workers’ answers. To judiciously assign tasks, the module
makes decisions based on three factors: (1) the worker’s quality, (2)
the domain vectors of tasks, and (3) how confident each task’s truth
can be inferred from previously received answers. Intuitively, we
assign a task to the worker if the task’s domains are the worker’s ex-
pertise and its truth cannot be confidently inferred. The assignment
is done online, i.e., tasks will be assigned to the worker instantly.

However, designing the three modules above is not straightfor-
ward. We technically address the above challenges as follows:

For DVE, although we can extract entities from a task based
on existing entity linking algorithm [39], ambiguities exist when
we link each extracted entity to real-world concepts (e.g., pages in
Wikipedia). For example, the entity Michael Jordan can either re-
fer to the famous basketball player (https://en.wikipedia.org/wiki/
Michael_Jordan), or the computer scientist (https://en.wikipedia.
org/wiki/Michael_I._Jordan) in Wikipedia. Suppose there are u
entities in a task, and each entity can be linked to 3 concepts, then
there are 3u possible linkings from the entities to concepts, which is
exponential. Thus deriving a domain vector for a task in a straight-
forward way involves aggregating an exponential number of such
linkings. We propose an algorithm that can reduce the complexity
from exponential to polynomial (Section 3).

For TI, it is challenging to infer each task’s truth correctly, as it
highly depends on workers’ qualities (which are unknown). Intu-
itively, we exploit the inherent relations between workers’ qualities
and tasks’ truth, and finally devise an iterative approach that collec-
tively infers those parameters. We also study how to maintain each
worker’s quality in the long run and devise update policies for the
incremental inference algorithms (Section 4).

Finally, for the OTA module, we have studied how to use the
three factors above (that affect task assignment), in order to esti-
mate the benefit of assigning each task to the worker, by consid-
ering if the task is answered by the worker; then we assign a set
of k tasks that attain the highest benefits. There are several chal-
lenges. (1) How to define the benefit function? (2) How to estimate
the answer given by the worker? (3) Typically for better user in-
teraction, a set of k tasks (e.g., k = 20 in [54, 44]) will be batched
together and assigned to the worker. To select the optimal k tasks
out of all (say, n) tasks, there are

(
n
k

)
possible combinations that

have to be considered, then how to efficiently compute the optimal
assignment? We have developed an optimal and linear algorithm to
support this complex assignment process (Section 5).

To summarize, our main goal is to study the impact of using do-
main knowledge in the crowdsourcing process. We further examine
how to use a knowledge base (KB) to realize this goal. We exam-
ine how to use a KB effectively and efficiently in the three key
procedures of crowdsourcing, namely, (1) domain vector estima-
tion (DVE), (2) truth inference (TI), and (3) online task assignment
(OTA). To our understanding, no previous work has examined the
use of domain knowledge in such a comprehensive manner. We
present a simple architecture to integrate these processes, and our
extensive experiments show that our solution outperforms state-of-

2

https://en.wikipedia.org/wiki/Michael_Jordan
https://en.wikipedia.org/wiki/Michael_Jordan
https://en.wikipedia.org/wiki/Michael_I._Jordan
https://en.wikipedia.org/wiki/Michael_I._Jordan

Table 1: Workers’ Qualities and Answers for Task t1.
Worker Worker’s Quality Worker’s Answer for Task t1
w1 qw1 = [0.3, 0.9, 0.6] vw1

1 = 1 (‘yes’)
w2 qw2 = [0.9, 0.6, 0.3] vw2

1 = 2 (‘no’)
w3 qw3 = [0.6, 0.3, 0.9] vw3

1 = 2 (‘no’)

the-art methods, i.e., [18, 30, 15, 16, 8, 54].

2. DATA MODEL
DEFINITION 1 (DOMAIN). Let D = {d1, d2, . . . , dm} de-

note the domain set with |D| = m domains.
An example domain set is D ={politics, sports, films}. The do-

main set is used to interpret tasks and profile workers, which can be
obtained by existing knowledge bases or question answering sys-
tems, e.g., main topics in Wikipedia [47], domains in Freebase [20],
or categories in Yahoo Answers [48]. The reason for using general
topics is that they can interpret a task and profile a worker in a fine-
grained manner. We record the worker’s familiar domains, which
can be further used when the same worker comes in the future.

DEFINITION 2 (TASK, DOMAIN VECTOR). A requester pub-
lishes n tasks, denoted as T = {t1, t2, . . . , tn}. Each task ti ∈ T
has a text description, followed by `ti possible choices. Each task
ti is modeled as a domain vector rti = [rti1 , r

ti
2 , . . . , r

ti
m], where

each rtik ∈ [0, 1] (1 ≤ k ≤ m) and
∑m
k=1 r

ti
k = 1. The domain

vector rti represents the distribution that task ti is related to each
domain in D. A higher value of rtik means that task ti is more
related to domain dk.

In this paper, we focus on multiple-choice tasks. Now let us
consider a task t1: “Does Michael Jordan win more NBA champi-
onships than Kobe Bryant?”, and the same D as above. The task
has `t1 = 2 choices: {yes, no}. From the text description we know
that the task is related to domains sports and films in D (note that
Michael Jordan starred in the film “Space Jam” in 1996), and it is
more relevant with sports, thus a reasonable domain vector for t1
is rt1 = [0, 0.78, 0.22] (we will show how to compute it in Sec-
tion 3). We use bold font to represent a vector (e.g., rt1) and the
symbol |·| to get the size of a vector or set (e.g., |rt1 | = |D| = m).

DEFINITION 3 (WORKER, QUALITY VECTOR). LetW denote
the worker set. Each worker w ∈ W is modeled as a quality vector
qw = [qw1 , q

w
2 , . . . , q

w
m], where each qwk ∈ [0, 1] indicates the

expertise (accuracy) of worker w in answering tasks in domain dk
(1 ≤ k ≤ m). A higher value qwk means that worker w has more
expertise on domain dk.

Considering the same D above, if worker w is an enthusiastic
sports-fan and movie-goer, while pays no attention to politics, then
a proper quality vector for w is qw = [0.3, 0.8, 0.8]. Note that a
worker can be an expert in multiple domains.

DEFINITION 4 (ANSWER, TRUTH). Workers can come to the
DOCS and answer tasks. Let `ti denote the number of possible
answers for task ti, and vwi denote the answer given by worker w
for task ti, i.e., 1 ≤ vwi ≤ `ti . We assume that a worker can
answer a task at most once. Each task ti has a (ground) truth, or
true answer, denoted as v∗i (1 ≤ v∗i ≤ `ti).

For the above example task t1 and `t1 = 2, suppose three work-
ers (w1, w2 and w3) give their answers in Table 1: vw1

1 = 1 (yes),
and vw2

1 = vw3
1 = 2 (no). The truth of t1 is v∗1 = 1 (as Michael

wins 6 championships while Kobe wins 5). Note that the truth v∗1
is unknown to us and we infer v∗1 based on workers’ answers.

3. DOMAIN VECTOR ESTIMATION
We propose a two-step framework to compute rt for task t.

Step 1: Extracting Entities, Concepts, and Indicator Vectors.
Based on the advances in information retrieval [39, 42, 36, 10],

we can leverage existing “entity linking” techniques [39] to detect
entities in a task. Each detected entity can be linked to a set of pos-
sible concepts, which forms a probability distribution where each
concept is associated with a probability that indicates the link from
entity to concept is correct (by considering the semantic meanings
in the text). For each concept, we can then use the hierarchical
structure of a knowledge base to compute an indicator vector, ex-
pressing the domains in D that are related to the concept.

We use the task t1 (denoted as t in this section) and D in Sec-
tion 2 as an example. Table 2 shows the generated information. We
denote Et = {e1, e2, . . . , e|Et|} as the set of detected entities for
task t, e.g., |Et| = 3 and e1 = Michael Jordan. For an entity ei ∈
Et, the distribution of all its possible correct concepts is denoted as
pi = [pi,1, pi,2, . . . , pi,|pi|], where each pi,j (1 ≤ j ≤ |pi|) is the
probability that the link from ei to its j-th concept is correct. For
example, for e2 (NBA), we get p2 = [0.8, 0.2] for its two concepts.
For the j-th concept in ei, the computed indicator vector is denoted
as hi,j = [hi,j,1, hi,j,2, . . . , hi,j,m], where each hi,j,k = 1 (0)
means that the j-th concept in ei is related (unrelated) to domain
dk. For example, as Michael_B._Jordan is an American actor, thus
it is only related to domain films (i.e., d3), and h1,3 = [0, 0, 1].
Step 2: Computing Domain Vector. We aggregate all entities of
a task to compute its domain vector, by considering the correctness
probability from an entity to a concept and the indicator vector of
each concept in an entity. However, it is prohibitively expensive to
compute the best domain vector (see Section 3.1).

3.1 Challenges in Computing Domain Vector
For a task t, based on step 1 we have all detected entities Et, the

distribution pi of concepts for an entity ei, and each concept’s in-
dicator vector hi,j . To compute the domain vector rt, we consider
all correct linkings between entities and concepts. For example,
in Table 2, one possible linking from the three entities in Et to
concepts is: e1–“Michael_B._Jordan”, e2–“National_Basketball_
Association”, e3–“Kobe_Bryant”. The correctness of the linking is
p1,3 · p2,1 · p3,1 = 0.08. Under this linking, the aggregated indi-
cator vector is h1,3 + h2,1 + h3,1 = [0, 2, 1], which counts the
number of related concepts in each domain, by considering all en-
tities in task t. As the domain vector is a distribution, it is then
normalized as h1,3+h2,1+h3,1∑m

k=1
(h1,3,k+h2,1,k+h3,1,k)

= [0, 2
3
, 1

3
]. From the

above analysis, we know that for a possible linking, we can derive
its corresponding correctness probability and normalized vector.

For ease of presentation, we use π = [π1, π2, . . . , π|Et|] to de-
note a possible linking, which means that ei (1 ≤ i ≤ |Et|) is
linked to the πi-th possible concept of ei. For example, the above
linking corresponds to π = [3, 1, 1]. Let Ω = {π} denote a set
containing all possible linkings, so |Ω| =

∏|Et|
i=1 |pi|. In this pa-

per, we assume the entity is linked into different concepts indepen-
dently. We will consider the issues of correlation among concepts
in the future. Then for each linking π ∈ Ω, we can derive its cor-
responding correctness probability Pr(π) =

∏|Et|
i=1 pi,πi and nor-

malized vector vπ = (
∑|Et|
i=1 hi,πi)/(

∑m
k=1

∑|Et|
i=1 hi,πi,k). As

the normalized vector vπ is a distribution that reflects the degree
of relatedness of task t to each domain w.r.t. the linking π, thus by
considering all possible π ∈ Ω, we define the domain vector rt as
the expected normalized vector, i.e.,

rt =
∑
π∈Ω

vπ ·Pr(π) =
∑
π∈Ω

∑|Et|
i=1 hi,πi∑m

k=1

∑|Et|
i=1 hi,πi,k

·
|Et|∏
i=1

pi,πi . (1)

Take the example in Table 2. By enumerating all possible π ∈ Ω
(|Ω|=3 · 2 · 1=6) as Equation 1, the domain vector is computed as
rt = [0, 0.78, 0.22]. However, directly computing rt via Equa-
tion 1 is expensive. Let c = max1≤i≤|Et| |pi|, i.e., the maximum

3

Table 2: The Information Generated for Task t: “Does Michael Jordan win more NBA championships than Kobe Bryant?”.
Entity Concept (Page in Wikipedia) Linking Probability Indicator Vector (of size m)

e1: Michael Jordan
https://en.wikipedia.org/wiki/Michael_Jordan p1,1 = 0.7 h1,1 = [0, 1, 1]

https://en.wikipedia.org/wiki/Michael_I._Jordan p1,2 = 0.2 h1,2 = [0, 0, 0]
https://en.wikipedia.org/wiki/Michael_B._Jordan p1,3 = 0.1 h1,3 = [0, 0, 1]

e2: NBA https://en.wikipedia.org/wiki/National_Basketball_Association p2,1 = 0.8 h2,1 = [0, 1, 0]
https://en.wikipedia.org/wiki/National_Bar_Association p2,2 = 0.2 h2,2 = [0, 0, 0]

e3: Kobe Bryant https://en.wikipedia.org/wiki/Kobe_Bryant p3,1 = 1.0 h3,1 = [0, 1, 0]

Algorithm 1: Domain Vector Computation
Input: Et, pi (1 ≤ i ≤ |Et|), hi,j (1 ≤ i ≤ |Et|, 1 ≤ j ≤ |pi|)
Output: rt

1 xi,j =
∑m

k=1 hi,j,k for 1 ≤ i ≤ |Et|, 1 ≤ j ≤ |pi|; // pre-computation
2 rt = [0, 0, . . . , 0]; // a vector of size m with all 0 elements
3 M = hash-map(); // we use M[key] to visit the value of the key (a 2-tuple)
4 for k = 1 to m (iterate over all domains) do
5 M[(0, 0)] = 1; // initialize the hash-map M
6 for i = 1 to |Et| (iterate over all entities) do
7 tmpM = hash-map(); // another hash-map, similar to M
8 for (nm, dm) ∈ M (iterate over all keys in M) do
9 value = M[(nm, dm)]; // get the value of the key: (nm,dm)

10 for j = 1 to |pi| (iterate over all concepts for entity ei) do
11 if (nm + hi,j,k, dm + xi,j) /∈ tmpM then
12 tmpM[(nm + hi,j,k, dm + xi,j)] = 0;
13 tmpM[(nm + hi,j,k, dm + xi,j)]+ = value · pi,j ;
14 M = tmpM; // assign tmpM to M for next iteration
15 for (nm, dm) ∈ M (iterate over all keys in M to compute the value of rtk) do
16 if dm 6= 0 then
17 rtk + = (nm/dm) · M[(nm, dm)]; // aggregate the value of rtk
18 return rt;

number of concepts in all entities, then it takesO(|Ω| · |Et| ·m) =

O(c|Et| · |Et| ·m) time, which is exponential.

3.2 Our Solution
We devise our solution in Algorithm 1, which computes the do-

main vector accurately by reducing the complexity from O(c|Et| ·
|Et| ·m) (exponential) toO(c ·m2 · |Et|3) (polynomial). The basic
idea is that although the number of possible linkings (|Ω|) is ex-
ponential, the number of possible normalized vectors is bounded.
For example, for the k′-th element in the normalized vector, i.e.,
(
∑|Et|
i=1 hi,πi,k′)/(

∑m
k=1

∑|Et|
i=1 hi,πi,k), as each h∗,∗,∗ ∈ {0, 1},

if we consider its numerator and denominator respectively, there are
at most (|Et|+ 1) · (m · |Et|+ 1) possible values for that element.
This inspires us to compute rt from the perspective of normalized
vectors in Algorithm 1.

To be specific, Algorithm 1 takesm iterations, where for the k-th
iteration (lines 5-17), it computes the k-th element of rt, i.e., rtk.
To achieve this, we use a hash-map (M), whose keys are the possible
(numerator, denominator) combinations (denoted by (nm,dm)), and
the corresponding value for a key (nm,dm) is the aggregated prob-
ability for nm/dm. In order to compute rtk, we consider each entity
iteratively. In the i-th iteration (lines 7-14), it derives an M, whose
keys are the possible (nm,dm) by considering the first i entities (i.e.,
from e1 to ei). In doing so, we leverage the derived M in last iter-
ation (i.e., considering the first i – 1 entities) and directly applies
the pi and hi,∗ of the i-the entity ei to generate a new temporary
hash-map tmpM. To be specific, for each key (nm,dm) in M, it is up-
dated based on concepts in ei: for the j-th concept, the key (nm,dm)
becomes new key (nm+hi,j,k, dm+xi,j), note xi,j =

∑m
k=1 hi,j,k,

which is initially stored in line 1, and the value (or aggregated prob-
ability) is multiplied by pi,j and added to the value of new key in
tmpM. At last tmpM is assigned to M for the next iteration (line 14).
After all entities are considered (|Et| iterations), we can finally use
the information in the derived M to compute rtk. (lines 15-17).
Running Example. Figure 2 shows how to compute rt2 in Table 2.
The i-th layer shows the derived M after considering ei. We use
‘key:value’ to represent each data in the hash-map. Initially for i =

(0,0):1

(1,2):0.7

(0,0):0.2

(0,1):0.1

(2,3):0.56

(1,2):0.22

(0,1):0.02

(1,1):0.16

(0,0):0.04

(3,4):0.56

(2,3):0.22

(1,2):0.02

(2,2):0.16

(1,1):0.04

i=1
i=2 i=3

M M
lines 7-14

(nm,dm) : value

= —*0.56 + —*0.22 + —*0.16 + —*0.04 + —*0.02=0.78
3

34
2 2

2
1

21
1

lines 15-17

Figure 2: A Run of Computing rt2 by Algorithm 1.

1 (e1), its three concepts (with p1, h1,∗) form M. For e2, based on
the derived M in last iteration, it is updated to a new one. For exam-
ple, (1, 2):0.7 is updated to (1+h2,1,2, 2+x2,1):0.7·p2,1=(2,3):0.56
and (1+h2,2,2, 2+x2,2):0.7·p2,2=(1,2):0.14. Moreover, as (0,1):0.1
can also be similarly updated as (1,2):0.08, thus the value for the
key (1,2) is aggregated as 0.14+0.08=0.22. After all 3 entities are
considered, rt2 = 0.78 is finally derived based on the final M. Fol-
lowing this, we can compute rt = [0, 0.78, 0.22].
Time Complexity of Algorithm 1. First the calculation of x∗,∗
takes O(c ·m · |Et|) time, where c = max1≤i≤|Et| |pi|. Then it
computes each element in rt iteratively. To compute a rtk (1 ≤ k ≤
m), we iteratively consider |Et| entities: for the i-th iteration, we
leverage the already derived M to further update itself to a new one,
by considering all concepts in ei. In each iteration, as the number
of keys in M is O(m · |Et|2), then it takes O(c · m · |Et|2). So
computing a rtk takesO(c·m·|Et|3), and the total time complexity
of deriving rt is O(c ·m2 · |Et|3).
The Implementations of DVE in DOCS. We adopt Freebase [20],
a large, reliable, and curated knowledge base. We construct D
based on 26 domains in Yahoo Answers [48], which consists of
a wide range of topics, such as Sports, Politics. We manually map
each of the 26 domains to the respective domain(s) in Freebase.
Next we discuss how to compute Et, pi, hi,j and rt.

We use an open-source entity linking tool Wikifier [36, 10], which
can detect entitiesEt in a task t. For each entity ei, it links to top 20
possible concepts (or pages) [36] in Wikipedia, by considering fea-
tures such as the frequency of the linking and the string similarity
between concepts and ei. Then it computes a probability distribu-
tion pi (of size 20), which indicates how probable each possible
concept is correctly linked to ei in the task. For each concept (in
Wikipedia), which can be redirected to the corresponding Freebase
concept using API, we compute the indicator vector hi,j (of size
26) by considering whether or not each domain inD is related to the
given concept in Freebase. Note that this can be obtained directly
from the corresponding concept page in Freebase. Finally, based
on Et, pi and hi,j (1 ≤ i ≤ |Et|, 1 ≤ j ≤ |pi|), Algorithm 1 is
leveraged to compute the task t’s domain vector rt.

4. TRUTH INFERENCE
In this section, we study the truth inference problem. The Input

of the problem includes: (1) tasks’ domain vectors (rti for 1 ≤

4

https://en.wikipedia.org/wiki/Michael_Jordan
https://en.wikipedia.org/wiki/Michael_I._Jordan
https://en.wikipedia.org/wiki/Michael_B._Jordan
https://en.wikipedia.org/wiki/National_Basketball_Association
https://en.wikipedia.org/wiki/National_Bar_Association
https://en.wikipedia.org/wiki/Kobe_Bryant

i ≤ n) and (2) all workers’ answers. The Output is each task’s
inferred truth (and we can also derive each worker’s quality vector).
To solve it, we first introduce an iterative approach (Section 4.1),
and then discuss how to use it in practice (Section 4.2).

4.1 Iterative Approach
We observe that there are two kinds of relations between work-

ers’ qualities and tasks’ truth: (1) given a task t, if the worker’s
quality values for t’s related domains are high, then her answer
is likely to be the truth for t; (2) given a worker w, if w often
answers tasks correctly related to a domain, then w has a high
quality for that domain. Based on these intuitions, we develop an
iterative approach, which updates the sets of parameters for tasks
and workers until convergence is reached. Here, we use qw to
denote a worker w’s quality; si = [si,1, si,2, . . . , si,`ti] is task
ti’s probabilistic truth, where si,j (1 ≤ j ≤ `ti) is the chance
that the j-th choice is the truth for task ti. We use V (i) to denote
the set of workers’ answers for task ti. For example, in Table 1,
V (1) = {vw1

1 , vw2
1 , vw3

1 }. We denote oi as task ti’s true domain.
Based on the domain vector rti , we have Pr(oi = k) = rtik .

To be specific, in our iterative approach, each iteration contains
two steps: in step 1, each task’s probabilistic truth si is inferred
based on workers’ qualities (qw); then step 2 reversely infers each
worker’s quality based on the tasks’ probabilistic truth. It will it-
erate until convergence. Finally, we infer the truth for each task
ti as v∗i = arg max1≤j≤`ti si,j (detailed algorithm can be found
in technical report [40]). We first detail the two steps, and then
analyze the Initialization and Time Complexity, respectively.
Step 1: Inferring the Truth (qw → si). In general, the proba-
bilistic truth si can be expressed by considering all domains:

si,j = Pr(v
∗
i = j | V (i)

) =
∑m

k=1
r
ti
k · Pr(v

∗
i = j | oi = k, V

(i)
). (2)

For simplicity, we denoteM(i)
k,j = Pr(v∗i = j | oi = k, V (i)). Note

thatM(i) is a matrix of size m × `ti , where each rowM(i)
k,• in it

represents the distribution of truth computed for the k-th domain,
then si can be computed by considering ti’s domain vector: si =

rti ×M(i) via matrix multiplication. In order to computeM(i)
k,j ,

we adopt two typical assumptions used in existing works [30, 16,
29]: (1) workers give their answers independently and (2) the priors
are uniform (i.e., Pr(v∗i = j) = 1/`ti). Then we can derive

M(i)
k,j =

∏
vw
i
∈V (i) Pr(vw

i | oi = k, v∗i = j)∑`ti
j′=1

∏
vw
i
∈V (i) Pr(vw

i | oi = k, v∗i = j′)
. (3)

Since there are `ti possible answers for task ti, to capture worker
w’s ability, similar to [54, 53], we compute the probability that the
worker answers incorrectly (i.e., 1−qwk) for those (`ti−1) incorrect
answers using a uniform distribution. Let 1{·} denote an indicator
function which returns 1 if the argument is true; 0 otherwise. For
example, 1{2=5} = 0 and 1{5=5} = 1. Then we have

Pr(v
w
i | oi = k, v

∗
i = j) = (q

w
k)

1{vw
i

=j} ·
(1− qwk
`ti − 1

)1{vw
i
6=j} . (4)

This means that the probability that w answers correctly for a task
with domain k is qwk , and likewise, the probability that w gives a
specific incorrect answer for that task is (1− qwk)/(`ti − 1).
Running Example. We use an example to show that step 1 can
satisfy the 1st relation. We compute s1 for task t1 in Table 2.
As the domain vector rt1 = [0, 0.78, 0.22], and we take work-
ers’ qualities (qw1 , qw2 , qw3) and answers (V (1)) in Table 1. We
first compute each vectorM(1)

k,•, e.g., forM(1)
2,• = [M(1)

2,1,M
(1)
2,2],

we derive M(1)
2,1 =

q
w1
2 (1−qw2

2)(1−qw3
2)

q
w1
2 (1−qw2

2)(1−qw3
2)+(1−qw1

2)q
w2
2 q

w3
2

= 0.93

andM(1)
2,2 = 0.07. Similarly we deriveM(1)

1,• = [0.03, 0.97] and

M(1)
3,• = [0.28, 0.72]. Then we compute s1,j (1 ≤ j ≤ 2) as

s1,1 =
∑3
k=1 r

t1
k · M

(1)
k,1 = 0.79, and similarly s1,2 = 0.21.

Note that although two workers w2, w3 answer “no” to t1, and
only one worker w1 answers “yes” to t1, the computed truth s1 =
[0.79, 0.21] tends to be “yes”. The reason is that (1) the task t1 is
more related to domain “sports” (0.78 in rt1), and (2) w1 has a
high quality (0.9) for domain “sports” while w2 and w3 have low
qualities (0.6 and 0.3) for it, making w1’s answer more reliable.
Step 2: Estimating Worker Quality (si → qw). We now es-
timate qw based on the computed si,j in step 1. As qwk denotes
worker w’s quality for the k-th domain, which is formally defined
as the fraction of tasks in domain dk thatw has answered correctly:

qwk =

∑
ti∈T (w) 1{oi=k}·1{vw

i
=v∗

i
}∑

ti∈T (w) 1{oi=k}
, where T (w) denotes the set of

tasks answered by worker w, e.g., in Table 1, T (w1) = {t1}. How-
ever, qwk is hard to compute directly, as task ti’s true domain (oi)
and truth (v∗i) are unknown. Fortunately we have their probabilis-
tic representations, which facilitate us to compute their expected
values, i.e., E[1{oi=k}] = rtik · 1 + (1 − rtik) · 0 = rtik , and sim-
ilarly E[1{vwi =v∗i }] = si,vwi . Then we take the expectation of the
numerator and denominator of qwk and derive

qwk =
(∑

ti∈T (w)
r
ti
k · si,vwi

)
/
(∑

ti∈T (w)
r
ti
k

)
. (5)

Intuitively, qwk is computed by considering the tasks answered by
worker w. To be specific, it considers (1) how much each answered
task is related to domain dk, i.e., rtik ; and (2) how probable each
task is answered correctly by worker w, i.e., si,vwi .
Running Example. We use an example to show that step 2 can sat-
isfy the 2nd relation. Suppose a worker w1 answers two tasks: t1
and t2 (`t1 = `t2 = 2), both with the first answer. Assume s1,1 =
0.95, and s2,1 = 0.3; for domain vectors, assume rt12 = 0.9 and
rt22 = 0.05. Then we get qw1

2 = (rt12 · s1,1 + rt22 · s2,1)/(rt12 + rt22)
= 0.92 (Equation 5). Note that although w1 answers poorly for t2
(s2,1 = 0.3), the worker’s quality for domain d2 is still very high
(qw1

2 = 0.92). The reason is that t2 is merely related to d2 (rt22 =
0.05); moreover, w1 answers accurately to t1 (s1,1 = 0.95), which
is highly related to d2 (rt12 = 0.9), making qw2 very high.
Initialization. To initialize all workers’ qualities, we can lever-
age each worker’s answering performance for golden tasks (Sec-
tion 5.2), i.e., tasks with known ground truth, which are used to test
a worker’s quality before a worker answers real published tasks.
Time Complexity. In step 1, let ` = max1≤i≤n `ti , then for each
task ti, computing each M(i)

k,j takes O(` · |V (i)|), thus this step
takesO(m`2 ·

∑n
i=1 |V

(i)|) time in all; in step 2, to compute each
qwk , it considers all the tasks answered by w, thus this step takes
O(m ·

∑
w∈W |T

(w)|) = O(m ·
∑n
i=1 |V

(i)|). Suppose it takes
u iterations to converge, then the time complexity is O(um`2 ·∑n
i=1 |V

(i)|) in total. In practice, m and ` are constants, and u ≤
20, thus the time complexity is linear to the number of answers.

4.2 Practical Truth Inference
We now study the practical issues about how to maintain work-

ers’ qualities for future use, and how to accelerate truth inference.
Maintenance of Workers’ Qualities. As different requesters may
publish different tasks to DOCS, the workers who have previously
answered tasks may come again in the future. Thus we need to
maintain workers’ previous answering performance, which can be
further used (e.g., initializing worker’s quality) in tasks published
by new requesters. Obviously, it is ineffective to store all of work-
ers’ previous completed tasks and answers. A straightforward way
is to store each worker w’s quality qw. However, this is insuffi-
cient, as each qwk (1 ≤ k ≤ m) is derived (Equation 5) based on

5

w’s answers for tasks in domain dk, and if w answers very few
tasks related to dk, the computed qwk is not confident. Thus besides
qwk , we also maintain another statistic uwk , i.e., the number of tasks
w has answered that are related to dk.

Specifically, in order to update a worker w’s quality qw, e.g.,
qwk (1 ≤ k ≤ m), DOCS maintains two statistics in database:
the quality qwk and its weight uwk , which is the expected number
of tasks answered by w that are related to domain dk, i.e., uwk =∑
ti∈T (w) r

ti
k . Suppose worker w came to DOCS before and an-

swered tasks. Let q̂wk and ûwk (1 ≤ k ≤ m) denote two statistics
stored for previous tasks, then by considering those computed for
newly answered tasks (i.e., qwk and uwk for 1 ≤ k ≤ m), Theorem 1
states how to update these two parameters correctly in DOCS.

THEOREM 1 (WORKER QUALITY UPDATE). If qwk and uwk are
updated as (q̂wk · ûwk + qwk · uwk)/(ûwk + uwk), and (ûwk + uwk), re-
spectively, then the quality of worker w is updated correctly.

PROOF. See technical report [40] for the detailed proof.
Accelerating Truth Inference. When a worker submits answers,
the TI module is run and the parameters are updated and stored in
the database (Figure 1). As TI takes an iterative approach, it could
be expensive to run until convergence. To alleviate this issue, we
develop an incremental approach. The challenges are three-fold:
(1) What are the parameters to update upon receiving an answer?
(2) How can we update those parameters instantly? (3) What pa-
rameters should we store in order to facilitate such updates?

W.l.o.g., assume workerw answers a task ti with the a-th choice.
Upon receiving the answer, the basic idea is that we only update the
parameters that are most related to task ti and worker w, i.e., task
ti’s truth and the qualities of workers who have answered task ti.
To facilitate such updates, we store the following parameters: (1)
for a worker w, based on Theorem 1, we store its quality qwk and
weight uwk (1 ≤ k ≤ m); (2) for a task ti, we store its matrixM(i)

and the probabilistic truth si. The update policy is as follows:
• Step 1: Inferring the Truth. In this step, we only update task
ti’s parameters, i.e.,M(i) (Equations 3-4) and si = rti ×M(i).
In fact, the process can be further accelerated by storing another
parameter M̂(i)

k,j , which records the numerator in Equation 3.
• Step 2: Estimating Worker Quality. In this step, we update the
qualifies of workerw and those who have answered ti before. To be
specific, (1) for workerw, qwk = (qwk · uwk + si,a · rtik)/(uwk + rtik)

and uwk = uwk +rtik ; (2) if workerw′ ever answered task ti with j-th
answer before, then qw

′
k = (qw

′
k · uw

′
k − s̃i,j · r

ti
k + si,j · rtik)/uw

′
k ,

where s̃i,j is the previous si,j before update (i.e., step 1 above).
The complete algorithm is shown in technical report [40]. It is

not hard to prove that the above two steps are bounded in time
O(m · |V (i)|), which is more efficient than the iterative approach.
Note that the incremental approach may not achieve as high quality
as the iterative one; however, its advantage is that the parameters
can be updated instantly, which fits to the scenario when workers’
answers arrive in a high velocity. In practice, we can run TI in a
delayed manner, that is, the iterative approach will be run in every
z submissions of answers (z = 100 in DOCS).

5. ONLINE TASK ASSIGNMENT
When a worker comes to crowdsourcing platforms such as AMT

[3], it instantly interacts with DOCS for task assignment. Specifi-
cally, AMT will pass the unique worker ID to us, then we dynami-
cally assign a set of k tasks (e.g., k = 20 in [54, 44]) to the coming
worker in AMT. In this section, we address two problems in OTA.
First, if the worker has already completed some tasks, we select k
tasks and assign them to the worker (Section 5.1). Second, if the
worker is new, we investigate how to select representative golden
tasks to test the worker’s quality (Section 5.2).

5.1 Online Task Assignment
If the coming worker w has answered tasks before, we can re-

trieve related parameters from database. The Input of the problem
includes (1) worker w’s quality (qw), and (2) tasks’ current infor-
mation (i.e.,M(i) and si for 1 ≤ i ≤ n). The Output of the prob-
lem is to select k tasks for worker w, from the task set T − T (w),
i.e., the set of tasks not answered by worker w before.

To assign tasks, on one hand, we assign tasks with domains
that the worker is good at; on the other hand, we have to evalu-
ate if a task is really beneficial to be assigned. For example, for
a task ti that is confident enough based on previous answers (e.g.,
si = [0.99, 0.01]), then even if the coming worker is a domain ex-
pert for the task, it is of very minor benefit to assign the task.

Following the above discussions, we design an assignment frame-
work, where for each task ti, it estimates the benefit of assigning
it to the coming worker, i.e., B(ti); we then select k tasks that at-
tain the highest benefits to the worker. In the following, we first
focus on the problem of assigning k = 1 task, and then address the
general problem of assigning k tasks.

Task Assignment for One Task (k = 1)
To address this, an important problem is how to estimate the benefit
of a task, by considering if the task is answered by the worker? Re-
call that for a task ti, we use a distribution si of size `ti to capture
its truth. Intuitively, the more concentrated si is (e.g., for a certain
choice j (1 ≤ j ≤ `ti), the value si,j is close to 1 while other
si,j′ for j′ 6= j are close to 0), the more confident to derive the
truth; otherwise, if si tends to be a uniform distribution, then the
truth is ambiguous. By capturing this idea, we apply entropy [38]
as the measure to define the ambiguity of a distribution si, i.e.,
H(si) = −

∑`ti
j=1 si,j · ln si,j . The higher the valueH(si) is, the

more ambiguous si is. We then define the benefit function B(ti).

DEFINITION 5 (BENEFIT FUNCTION B(·)). For a task ti, when
a worker w comes, let ŝi denote the distribution after w answers
the task, then the benefit of assigning ti to worker w is defined as
how much ambiguity can be reduced based on the assignment, i.e.,
B(ti) = H(si)−H(ŝi).

However, the computation of B(ti) is challenging, as ŝi is un-
known before ti is really answered by w. Then to estimate ŝi, we
have to consider the following two questions:
Q1: what answer the worker may give to the task, and
Q2: how the truth will change if the worker gives an answer.
Next we solve Q1 and Q2, respectively.
Solutions to Q1. In estimating the answer that will be given by w,
we denote it as a random variable vwi (1 ≤ vwi ≤ `ti) and estimate
it based on the collected answers, i.e., Pr(vwi = a | V (i)). By
considering all possible true domain oi and truth v∗i for task ti, we
can express Pr(vwi = a | V (i)) as follows:
m∑

k=1

Pr(oi = k)

`ti∑
j=1

Pr(v
w
i = a | oi = k, v

∗
i = j) Pr(v

∗
i = j | oi = k, V

(i)
).

Then we can derive the following theorem that solves Q1.

THEOREM 2. The probability that worker w will give the a-th
choice to task ti is

Pr(v
w
i = a | V (i)

) =

m∑
k=1

r
ti
k ·
[
q
w
k ·M

(i)
k,a+

1− qwk
`ti − 1

·(1−M(i)
k,a)

]
. (6)

PROOF. See technical report [40] for the detailed proof.

Solutions to Q2. We talk about how the truth si will be updated.
Suppose worker w gives the a-th choice to task ti, and letM(i)|a

denote the updated matrix ofM(i). Based on Equations 3 and 4,
we can derive the formula of each element inM(i)|a in Theorem 3.

6

THEOREM 3. If worker w gives the a-th choice to task ti, then

M(i)|a
k,j =

M(i)
k,j · (q

w
k)

1{j=a} ·
(1−qwk
`ti
−1

)1{j 6=a}

∑`ti
j′=1

M(i)

k,j′ · (q
w
k)

1{j′=a} ·
(1−qw

k
`ti
−1

)1{j′ 6=a}
. (7)

PROOF. See technical report [40] for the detailed proof.

Then we can update the truth si as ŝi = rti ×M(i)|a, by consid-
ering that worker w gives the a-th choice to ti.

The solutions to Q1 and Q2 tell us how to compute the probabil-
ity that w gives the a-th choice to ti, and the updated truth ŝi if the
answer is really given. Considering all possible answers, we define
H(ŝi) in an expected manner, i.e.,

H(ŝi) =
∑`ti

a=1
H(rti ×M(i)|a) · Pr(vwi = a | V (i)). (8)

Then for each task ti, we can computeH(ŝi) via Equations 6, 7, 8,
and derive B(ti) in Definition 5. We select the task with the highest
benefit, i.e., arg maxti∈T −T (w) B(ti).

Task Assignment for k Tasks
To select k tasks out of the set T − T (w), it has two challenges:
Challenge I. For a fixed set of k tasks, denoted as Tk (Tk ⊆ T −
T (w) and |Tk| = k), we need to consider all possible answers given
by worker w. W.l.o.g., we assume Tk contains the first k tasks in
T (i.e., ti ∈ Tk for 1 ≤ i ≤ k). Let φ = [φ1, φ2, . . . , φk]
denote one possible combination of answers given by w for Tk,
and 1 ≤ φi ≤ `ti . Then upon receiving the answers φ, following
Definition 5, the benefit of k tasks is changed to

Bφ(Tk) =
∑k

i=1

[
H(si)−H(rti ×M(i)|φi)

]
. (9)

Let all possible combinations of answers for Tk form a set Φ =
{φ} and |Φ| =

∏k
i=1 `ti . Then if we consider all φ ∈ Φ, the

expected benefit of assigning Tk, denoted as B(Tk) is expressed as

B(Tk) =
∑

φ∈Φ
Bφ(Tk) ·

∏k

i=1
Pr(vwi = φi | V (i)). (10)

From the above analysis we know that even for a fixed k-task set
Tk, computing its benefit (Equation 10) needs to require exponen-
tial number of combinations in Φ (as |Φ| =

∏k
i=1 `ti).

Challenge II. Moreover, we need to select the optimal k tasks (i.e.,
with the highest value B(Tk)) out of the set T −T (w). This process
requires enumerating all

(
n
k

)
possible cases in the worst case.

To address the first challenge, fortunately we can prove the fol-
lowing theorem, which reduces the complexity from exponential to
linear. The basic idea is that if we consider all possible answers for
one task (e.g., t1), then it can be safely proved that B(t1) can be
extracted from B(Tk), and similarly other B(ti) for ti ∈ Tk − {t1}
can also be extracted and added independently.

THEOREM 4. B(Tk) =
∑
ti∈Tk

B(ti).

PROOF. See technical report [40] for the detailed proof.

Theorem 4 implies that to compute the benefit for k tasks, we can
compute each B(ti) (Definition 5 and Equations 6, 7, 8) and add up
individual benefit. Then in order to address the second challenge,
i.e., to select the k tasks with highest B(Tk), we only need to select
top k tasks with the highest values of B(ti), from the set T −T (w).
Time Complexity. To compute the benefit for each task (Equa-
tion 8), it should compute Equations 6, 7, which take O(m`2) in
all, where ` = max1≤i≤n `ti . Then computing benefits for all
tasks take O(nm`2). As selecting top k values in a size n list can
be addressed linearly (e.g., PICK algorithm in [7]), the time com-
plexity for task assignment isO(nm`2). Considering that m and `
are often constants, the complexity is linear to the number of tasks.

5.2 Selecting Golden Tasks
For a new worker, to test the worker’s quality for different do-

mains, we select some tasks with ground truth, called golden tasks.
The golden tasks are selected after DVE is done. Then for each
new worker from AMT [3], we assign the same golden tasks to her,
and initialize her quality by comparing her answers with the ground
truth for these tasks. However, we can manually label the ground
truth (or refer to experts) for only a limited number of tasks. Thus
given n tasks and a number n′ � n, the problem is how to select
the most representative n′ tasks (out of n tasks) as golden tasks?

In order to profile each worker in a fine granularity w.r.t. n tasks,
we consider two intuitive guidelines. (1) Each selected golden task
should accurately capture a certain domain. For example, for the
k-th domain, the selected task ti should guarantee that its domain
vector rti has a high value of rtik . (2) The distribution of selected
golden tasks w.r.t. domains should approximate the distribution of
all tasks’ aggregated domain vectors. Let n′k denote the number of
tasks selected for the k-th domain, and

∑m
k=1 n

′
k = n′. Then the

distribution σ = [
n′1
n′ ,

n′2
n′ , . . . ,

n′m
n′] should approximate the distri-

bution τ = [
∑n

i=1 r
ti
1

n
,
∑n

i=1 r
ti
2

n
, . . . ,

∑n
i=1 r

ti
m

n
].

Suppose we know n′k for 1 ≤ k ≤ m, then following the first
guideline, for each domain dk, we can select top n′k tasks with the
highest values of rtik , i.e., highly related to dk. Then the remaining
problem is how to decide each n′k for 1 ≤ k ≤ m?

Following guideline 2, to define the similarity of two distribu-
tionsσ and τ , a widely-used metric is KL-divergence [26]: D(σ, τ)
=
∑
i σi · ln(σi/τi). It can be proved in [26] that D(·, ·) ≥ 0 and

the lower the value is, the similar the two distributions are. Thus
we aim to minimize D(σ, τ) w.r.t. constraints as follows:

min
{n′

k
}

∑m

k=1

n′k
n′
· ln

n′k · n
n′ ·

∑n
i=1 r

ti
k

s.t.
∑m

k=1
n′k = n′ and n′k ∈ N for 1 ≤ k ≤ m.

(11)

It is not hard to prove that solving Equation 11 is NP-hard, due
to the fact that it is in general an “Integer Programming Prob-
lem” [33]. Despite its hardness, we devise an approximation algo-
rithm (the detailed algorithm can be found in technical report [40]).

The general idea is to let each n′k/n
′ ≈

∑n
i=1 r

ti
k /n for 1 ≤

k ≤ m w.r.t. constraints in Equation 11. To do this, we first derive
a lower-bound for each n′k and set n′k = b

∑n
i=1 r

ti
k /n·n

′c. Then a
procedure is run for n′−

∑m
k=1 n

′
k times, and each time it conducts

n′ind = n′ind + 1, where ind (1 ≤ ind ≤ m) is the choice of the
domain with the minimum objective value if selected, i.e.,

ind = mink {n
′
k+1

n′ · ln
(n′k+1)·n
n′·
∑n

i=1 r
ti
k

+
∑
j 6=k

n′j
n′ · ln

n′j ·n

n′·
∑n

i=1 r
ti
j

}.

Finally for each domain dk, we select top n′k tasks with the highest
values of rtik , and then obtain all our selected n′ golden tasks.
Time Complexity. To solve Equation 11, first computing the lower-
bounds takeO(m) time. For a real number x, we know x ≤ bxc+

1, then n′ =
∑m
k=1

∑n
i=1 r

ti
k

n
· n′ ≤

∑m
k=1b

∑n
i=1 r

ti
k

n
· n′c+m,

thus the procedure is run at most m times, which takes O(m2 · n)
time. After solving Equation 11, selecting top n′k tasks for different
domains takes O(m · n) time. So in total it takes O(m2 · n) time.

6. EXPERIMENTS
We evaluate DOCS on both real and simulated datasets. The

settings are introduced in Section 6.1. Unless stated otherwise, real
datasets are used to evaluate both the effectiveness and efficiency of
the three modules: DVE (Section 6.2), TI (Section 6.3), and OTA
(Section 6.4). We implement DOCS in Python 2.7 with the Django
web framework on a 16GB memory Ubuntu server.

7

6.1 Settings
Real-World Datasets. We conduct experiments on AMT [3] with
four real-world datasets.
ItemCompare Dataset (Item). It [18] contains 360 tasks with 4
domains: NBA, Food, Auto and Country, where each domain has
90 tasks. For each task, it asks workers to compare between two
items. The task descriptions in each domain are highly similar, for
example, in domain Food, each task compares which food (e.g.,
‘Chocolate’ and ‘Honey’) contains more calories.
4-Domain Dataset (4D). It contains 400 tasks, which cover 4 do-
mains: NBA, Car, Film and Mountain, where each domain has 100
tasks. Different from dataset Item, in 4D the task descriptions in
each domain are not that similar, e.g., in domain NBA, the tasks
vary in different forms: we ask the position of a player; compare
the height (or age) of two players; compare which team wins more
championships, etc. We manually label the ground truth.
Yahoo QA Dataset (QA). It [35] includes queries to a search en-
gine in 2012-2014, and each query has a best answer in Yahoo
Answers [48]. We select 1000 queries from the dataset, where for
each query, we generate tasks related to the best answer. For ex-
ample, “Where does chili originate from, Texas or Turkey?”, where
the best answer (‘Texas’) and the correct domain (‘Food&Drink’)
can be extracted from the corresponding webpage [2].
SFV Dataset (SFV). It [30] contains 328 tasks, where each task
asks the attribute of a person (e.g., the age of Bill Gates), and each
task also shows a set of choices collected from different QA sys-
tems [25, 55], from which the workers select one as the correct
choice. The ground truth is provided by [30].
Answer Collection. We publish tasks for the four datasets on
AMT [3], which interacts with workers using Human Intelligence
Task (HIT). When a worker comes, we batch k = 20 tasks in a HIT
(same as [54, 44]) to the worker, and pay $0.1 for the worker upon
finishing the HIT. We assign each task to 10 different workers, so
each dataset costs 360×10

20
× $0.1 = $18, $20, $50 and $16.4, re-

spectively. We select 20 golden tasks (Section 5.2) for each dataset.
(1) In TI (Section 6.3), to make a fair comparison, we collect work-
ers’ answers as above and compare our solution (Section 4.1) with
the existing methods on the same collected answers for each dataset.
(2) In OTA (Section 6.4), as the assigned tasks for each coming
worker may be totally different for different methods, to ensure that
the same set of workers are used in comparisons, similar to [54], we
assign tasks to a coming worker in parallel using different assign-
ment methods. To be specific, there are 6 methods (see below) in
comparison for task assignment, and when a worker comes, we use
each method to assign 3 tasks, so 3 × 6 = 18 tasks are batched in
a HIT (in random order) and assigned to the coming worker. We
ensure that each method collects the same number of answers (e.g.,
360×10 for dataset Item) in total. Then we compare with them on
respective collected answers for each dataset.
Comparisons. We compare DOCS with existing methods: iCrowd
(IC) [18], FaitCrowd (FC) [30], Majority Vote (MV), ZenCrowd
(ZC) [16], David&Skene (DS) [15], AskIt! [8], QASCA [54]. As
different methods focus on different perspectives, we compare with
different methods in different modules.
(1) In DVE (Section 6.2), we compare with IC [18] and FC [30],
which try to exploit the domain(s) of each task.
(2) In TI (Section 6.3), we compare with MV, ZC [16], DS [15],
IC [18] and FC [30], which study truth inference.
(3) In OTA (Section 6.4), we perform end-to-end comparisons with
methods AskIt! [8], IC [18], QASCA [54] and two baseline meth-
ods (Baseline and D-Max) that study online task assignment.
Evaluation Metric. For effectiveness, we use Accuracy to evaluate

the quality of a method, and it measures the percentage of tasks
whose truth are inferred correctly by the method. For efficiency,
we measure the Execution Time of a method.

6.2 Evaluating Domain Vector Estimation
Evaluating the Accuracy of Domain Detection. We compare
with two methods IC [18] and FC [30], which exploit diverse do-
mains in a task. To be specific, IC uses Latent Dirichlet Analysis
(LDA [6]) to model diverse domains in a task and compute the co-
sine similarity between pairwise tasks. It first manually sets the
number of latent domains (m′), and then uses a generative model
to capture how each task’s text can be generated. Finally it learns a
distribution (sizem′ vector) for each task, which indicates how it is
related to each domain. Similarly, FC uses TwitterLDA [51], which
is an adaptation of LDA [6] and focuses more on short texts (e.g.,
Tweets). It also sets the number of latent domains (m′′) and then
learns a specific domain for each task. To summarize, the two mod-
els used by IC and FC (1) only consider the text in each task, and
(2) manually set the number of latent domains and learn a domain
vector for each task w.r.t. latent domains. Different from them,
DOCS (1) considers knowledge base (i.e., Freebase [20] with rich
contextual and semantic information), and (2) learns a domain vec-
tor that captures the explicit domains (i.e., 26 domains in Yahoo
Answers [48]), rather than the latent domains for each task. Next,
we compare DOCS with IC and FC on four datasets.
• Datasets Item & 4D. For dataset 4D, there are 4 domains, and we
manually set the latent m′ and m′′ as 4 to favor them. DOCS uses
the default 26 explicit domains. After computing the domain vector
for each task, we regard the domain with the highest probability as
the detected domain for each task. Then we manually check for IC
and FC on how each latent domain can be mapped to the 4 domains
NBA, Car, Film and Mountain: for the domain vectors in tasks with
true domain (say NBA), if we find that the probabilities in a latent
dimension is very high, then we map that latent dimension to NBA.
In DOCS, we can verify that the 4 domains are mapped to Sports,
Cars, Entertain and Science in Yahoo Answers [48], respectively.
Finally, we compute the domain detection accuracy per domain (the
percentage of tasks that are detected correctly in the domain). Fig-
ures 3(a)(b) show the domain detection accuracy for each domain,
by comparing with different methods. We also record their overall
domain detection accuracy in Figure 3(e). It can be observed that
in Item, the accuracy is very high (∼100%) in all domains for three
methods; however, in dataset 4D, our method DOCS performs
much better compared with IC and FC, and the reason is that they
use topic model-based methods (LDA [6] and TwitterLDA [51]),
which perform well if the tasks in each domain have high string
similarities (e.g., in Item, tasks in each domain compare two given
items on the same metric); however, in 4D, as task descriptions
vary in each domain, they cannot detect the correct domain. For
example, both of the two methods detect the tasks that compare
the heights between two basketball players and two mountains in
the same domain, mainly because they have high string similarities.
However, DOCS can detect the difference between them based on
the semantic information of players and mountains, yielding the
overall detection accuracy above 95%.
• Datasets QA & SFV. For dataset QA, although there are 26 do-
mains in Yahoo Answers, most of the queries are related to Enter-
tain, Science, Sports and Business (as most collected search engine
queries [35] are related to them), so we only focus on tasks in those
four domains and set the latent m′ and m′′ as 4. For dataset SFV,
since each task asks a specific attribute for a person (e.g., age of
Bill Gates), we manually label the ground truth of the person as
his/her most renowned domain (e.g., Business). As most tasks are

8

Table 3: The Efficiency of Different Heuristics on DVE.
Dataset Top-20 (Default) Top-10 Top-3

Alg. 1 Enum. Alg. 1 Enum. Alg. 1 Enum.
Item 27.3s >1 day 7.5s >1 day 0.6s 1.3s
4D 28.6s >1 day 8.8s >1 day 0.8s 1.4s
QA 58.1s >1 day 23.8s >1 day 2.6s 264.7s
SFV 46.3s >1 day 17.7s >1 day 1.9s 406.8s

related to domains Entertain, Business, Sports and Politics, we fo-
cus on those tasks and set m′ = m′′ = 4. Similarly we compute
the domain detection accuracy for the three methods as above in
Figures 3(c)(d) and record the overall domain detection accuracy
in Figure 3(e). It can be seen that in real-world question answering
tasks, as tasks in each domain are not that similar in strings syntac-
tically, IC and FC perform very bad (FC performs better than IC
as it favors more on short texts); however, DOCS can capture the
semantics in each domain and derive the correct domain accurately.
As a result, it achieves over 20% improvement in overall accuracy.
Analysis on Multiple Domains. Note that for each task, the ground
truth is only one domain. However, in real-world datasets (e.g.,
QA), each task can be related to multiple domains. Based on the
computed domain vectors, we pick out those tasks whose domain
vectors have more than one mode (or peak). Among them, we find
some interesting cases. For example, in the task “Is there a name
for the whistle song that the Harlem Globetrotters are known for?”,
it is both related to domains ‘Entertain’ and ‘Sports’, and our com-
puted domain vector has both high probabilities on those two do-
mains. Similarly, we find that the task “Who owns the Atalanta
calcio (soccer/football) team in italy?” is related to both ‘Busi-
ness’ and ‘Sports’; while the task “What is the name of Simpson’s
episod, where Russia becomes Soviet Union?” is related to both
‘Entertain’ and ‘Politics’. Note that our framework also considers
the relatedness of each domain to each task. In the future, it might
be interesting to develop metrics on evaluating how a method can
compute a task’s multiple domains correctly.
Evaluating the Efficiency of DVE. We next compare the efficiency
of Enumeration (O(c|Et| · |Et| ·m)) and Algorithm 1 (O(c ·m2 ·
|Et|3)) on different heuristics. In DOCS, we set m = 26, and Et
is the set of detected entities by Wikifier [36], which extracts top
c = 20 related concepts for each entity. The efficiency of different
methods on different datasets is shown in Table 3. It can be seen
that on all four datasets, Algorithm 1 completes within one minute;
on the other hand, Enumeration needs more than 1 day to finish.
We have also compared the efficiency with two heuristics, which
remove low-probability concepts, and only extract top c = 10 and
c = 3 concepts for each entity. It can seen in Table 3 that although
Enumeration performs fine on small datasets with few entities (e.g.,
4D, Item), it is outperformed significantly (more than 100 times)
by Algorithm 1 on QA and SFV. The reason is that Enumeration
takes more time in QA-based tasks with a large number of entities.

6.3 Evaluating Truth Inference
In this section we evaluate TI in DOCS. We first exploit different

aspects of our TI, and then compare our TI with other competitors.
Finally we perform a case study on a dataset (Item).
Convergence. We run the iterative TI on the collected answers
and identify the change of parameters between adjacent iterations.
Let s̄i,j and q̄wk denote the probabilistic truth and worker quality in
the last iteration, then the change of parameters ∆ between the ad-
jacent two iterations is defined as ∆ =

∑n
i=1

∑`ti
j=1

|si,j−s̄i,j |
n·`ti

+∑
w∈W

∑m
k=1

|qwk −q̄
w
k |

|W|·m . We vary the number of iterations and
record ∆ in Figure 4(a). It can be seen that ∆ drops significantly in
the first 10 iterations and remains steady (convergence) ever since.
In practice, we can terminate TI within a few (say 20) iterations.

Varying #Golden Tasks. As we initialize each worker’s quality us-
ing golden tasks, in Figure 4(b) we vary the number of golden tasks
in [0, 40] and observe the change of accuracy on different datasets.
It can be seen that the quality is significantly improved with a small
number of golden tasks, as the iterative approach requires a good
initialization. However, when the golden tasks are aplenty (say 20),
the accuracy remains steady. For practical usage, we set the number
of golden tasks as 20, which works well in experiments.
Varying #Collected Answers. As we collect each dataset by as-
signing each task to exactly 10 workers, in Figure 4(c), we vary the
number of collected answers in [1, 10] for each task and observe
the accuracy of TI on different datasets. It can be seen that the
accuracy becomes better as more answers are collected. However,
for some dataset such as Item, it remains stable as≥ 8 answers are
collected. We will study the estimation of stable point in future.
Worker Quality Estimation. We next examine, when the worker
answers more tasks, whether a worker’s quality is closer to the
worker’s true quality. We first compute each worker w’s true qual-
ity q̃w by comparing the worker’s answers with the ground truth.
Here, q̃wk (1 ≤ k ≤ m) is the fraction of the number of cor-
rectly answered tasks by worker w, among all her answered tasks
in domain dk. Then, we vary the number of collected answers (in
[1, 50]) for each worker, and run TI to compute each worker w’s
quality qw. Finally, we record the average deviation, defined as∑
w∈W

∑m
k=1

|q̃wk −q
w
k |

m·|W| , in Figure 4(d). As workers answer more
tasks, the average deviation decreases. Also, when 80 or more tasks
are answered, the deviation becomes consistently low.
Scalability of TI (Simulation). We create n tasks with m = 20.
Then the worker set W is generated, and each task is assigned to
10 randomly selected workers from W . We vary n ∈ [0, 10K],
|W| ∈ {10, 100, 500} and run TI on randomly generated work-
ers’ answers. Figure 4(e) records the time. It can be seen that the
time linearly increases with n, and the worker size is invariant with
time, which corresponds to the complexityO(cm`2 ·

∑n
i=1 |V

(i)|).
Given that truth inference can be done offline, it is efficient, as it
takes less than 15s with large data (n = 10K and |W| = 500).
Comparing DOCS with Competitors on TI. We compare with
other five competitors (i.e., MV, ZC, DS, IC and FC) on truth infer-
ence: (1) MV regards the truth of a task as the answer given by the
highest number of workers; (2) ZC [16] models each worker’s qual-
ity as a value, and adapts EM framework [17] to iteratively compute
worker’s quality and truth; (3) DS [15] models each worker’s qual-
ity as a matrix, and also adapts EM framework [17] to iteratively
compute worker’s quality and truth; (4) IC [18] models a worker’s
quality for each task, and derives the truth using weighted majority
voting; (5) FC [30] models a worker’s quality as a vector of size
m′′, indicating the worker’s quality for different latent domains,
and it iteratively drives truth and worker’s quality.

To make a fair comparison, we initialize the workers’ qualities of
all other competitors using the same golden tasks. Note that as IC
and FC exploit the domains of each task, and the domain detection
accuracy is not satisfactory (Figure 3), to do a more challenging
job, we initially assign the ground truth of each task’s domain to
IC and FC, and then compute the truth of each task by them. We
show the comparison results on both the effectiveness (Accuracy)
and efficiency (Execution Time) of all datasets in In Figures 5(a)(b).
We have the following observations: (1) MV is surpassed by other
competitors, as it does not model a worker’s quality and regard
each worker as equal. (2) ZC and DS model a worker as a value
or matrix, which does not consider a worker’s quality for different
domains, and that is why they are outperformed by more advanced
methods. (3) IC, FC and DOCS model a worker’s qualities for dif-

9

 0

 20

 40

 60

 80

 100

NBA Food Auto CountryD
o
m

a
in

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
) (a) Dataset Item

 0

 20

 40

 60

 80

 100

NBA Car Film MountainD
o
m

a
in

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
) (b) Dataset 4D

 0

 20

 40

 60

 80

 100

Entertain Science Sports BuisinessD
o
m

a
in

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
) (c) Dataset QA

 0

 20

 40

 60

 80

 100

EntertainBuisiness Sports PoliticsD
o
m

a
in

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
) (d) Dataset SFV

 0

 20

 40

 60

 80

 100

Item 4D QA SFVD
o
m

a
in

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
) (e) Overall

IC(LDA) FC(TwitterLDA) DOCS

Figure 3: The Domain Detection Accuracy of Different Methods Per Domain (a-d) and the Overall Domain Detection Accuracy (e).

 0

 0.1

 0.2

 0.3

 5 10 15 20 25 30 35 40 45 50P
a

ra
m

e
te

r
C

h
a

n
g
e

 (
 ∆

)

Iteration

(a) Convergence

Item
4D
QA

SFV

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

A
c
c
u

ra
c
y
 (

%
)

#Golden Tasks

(b) Varying #Golden Tasks

Item
4D
QA

SFV
 50

 60

 70

 80

 90

 100

 2 4 6 8 10

A
c
c
u

ra
c
y
 (

%
)

#Collected Answers For Each Task

(c) Varying #Collected Answers

Item
4D
QA

SFV

 0

 0.1

 0.2

 0.3

 0.4

 20 40 60 80 100

A
v
e

ra
g

e
 D

e
v
ia

ti
o

n

#Answered Tasks For Each Worker

(d) Worker Quality Estimation

Item
4D
QA

SFV

 0

 5

 10

 15

 20

0 2K 4K 6K 8K 10K

E
x
e

c
u

ti
o

n
 T

im
e
 (

s
)

#Tasks (n)

(e) Scalability of TI (Simulation)

10 workers
100 workers
500 workers

Figure 4: Exploiting Different Aspects of the Truth Inference (TI) in DOCS.

ferent domains, and DOCS outperforms other competitors on all
datasets. Note that although IC and FC have been assigned with
the ground truth of each task’s domain in truth inference, we still
outperform them a lot because our designed approach can capture
the inherent relations between workers’ qualities and tasks’ truth
accurately; while for FC, the modeled relations cannot capture the
inherent relations very well, and for IC, it uses weighted majority
voting, whose result is easy to be misled by low-quality workers.
(4) For efficiency (Figure 5(b)), MV is the fastest as it can directly
compute the truth of each task, while others adopt an iterative ap-
proach. IC is the least efficient as it first takes a preliminary offline
computation, which will then facilitate online inference. As truth
inference can be done offline, all methods can work well in prac-
tice. Dataset QA costs more time as it is larger than others.

We perform a case study on Item to show workers’ qualities.
Worker’s True Quality Across Domains. Similar to Worker Qual-
ity Estimation, we first compute each worker w’s true quality q̃w

for four domains (qwk). In each domain (1 ≤ k ≤ 4), we split each
worker w’s quality qwk into 10 bins: it falls into the i-th bin (1 ≤
i ≤ 9) if qwk ∈ [i−1

10
, i

10
), and in the 10-th bin if qwk ∈ [0.9, 1.0].

Then for each domain, we record the number of workers that fall
into each bin in Figure 6(a). It can be seen that most workers are
good at answering tasks related to Auto (as there are ≥15 workers
with quality ≥ 0.9); while workers have relatively low qualities on
answering tasks related to Food. This means that it is necessary to
select domain experts in all workers.
Worker Quality Calibration. Similar to the above, we first com-
pute each worker w’s true quality q̃w. Then we study whether the
estimated quality qwk by DOCS is close to the true quality q̃wk . In
Figure 6(b), we select 3 workers who have answered the highest
number of tasks and study their qualities. Specifically, the three
workers are identified by labels ‘×’, ‘�’, ‘�’; each worker w cor-
responds to 4 points, where each point (q̃wk , qwk) corresponds to a
domain dk (1 ≤ k ≤ 4). In the ideal case, all points should lie
on the line Y = X , which means that the quality is estimated the
same as the true quality. We observe that (1) a worker has diverse
qualities in different domains. For example, the worker with label
‘�’ has high qualities on two domains, and low qualities on other
domains. (2) We can estimate a worker’s quality accurately, as the
points drawn in the figure lie very close to the line Y = X . For the
domain NBA (d1), we further plot the points for all workers who
have performed more than one HIT (i.e.,> 20 tasks) in Figure 6(c).
We can observe that in general, qw1 is close to q̃w1 .

6.4 Evaluating Online Task Assignment
We first evaluate golden tasks selection, and then compare with

other competitors in task assignment on respective collected datasets.
Evaluating Golden Tasks Selection (Simulation). The key of se-
lecting golden tasks (Section 5.2) is to solve Equation 11, which

enumerates all possible vectors [n′1, n
′
2, . . . , n

′
m] such that

∑m
k=1 n

′
k

= n′ and n′k ∈ N (1 ≤ k ≤ m). This is called “Compositions of n′

with sizem (0 is allowed)” [12], and it consists of
(
n′+m−1
m−1

)
possi-

ble cases. By enumerating all cases, we can derive the optimal vec-
tor which obtains the minimum KL-divergence, i.e., Dopt. We can
also computeD based on our solution (Section 5.2). We setm = 10,
vary n′ ∈ [0, 20], and for each n′, a distribution of sizem, i.e., τ is
randomly generated. Then we record the time of both methods in
Figure 7(a). It can be seen that the time for Enumeration increases
exponentially with n′, and when n′ = 20, it takes more than 600s;
while DOCS is efficient, which takes<0.01s. We also compute the
approximation ratio, defined as γ = |D−Dopt|/Dopt over all ex-
periments, and the average γ is within 0.1%, which means that our
computed results are very close to optimum. Next, we evaluate the
scalability of our solution in Figure 7(b). We vary n′ ∈ [1K, 10K],
m ∈ {10, 20, 50} and observe the execution time. It can be seen
that for a givenm, the time is invariant with n′, because the method
that solves Equation 11 takes O(m2 · n), i.e., independent of n′.
Comparing DOCS with Competitors on OTA. We compare with
other five competitors (i.e., Baseline, AskIt!, IC, QASCA, and D-
Max) that address task assignment. Note that task assignment also
requires truth inference method to derive worker’s quality and in-
fer task’s truth: (1) Baseline uses MV to infer truth and randomly
selects k tasks to assign to the coming worker; (2) AskIt! [8] uses
MV to infer truth and leverages an entropy-like method to select
k tasks for assignment; (3) IC [18] uses weighted majority vot-
ing to infer truth, and intuitively, it selects k tasks for assignment
such that the coming worker has the highest quality to answer, with
the constraints that each task should be answered with the same
number of times (in our scenario, exactly 10 times) in the end; (4)
QASCA [54] uses DS [15] to infer truth, and it selects k tasks
such that the estimated quality (Accuracy in our scenario) can be
improved most, and assigns them to the worker. (5) D-Max uses
TI (Section 4) to infer truth, and it selects k tasks for assignment
such that the coming worker has the matching domain to answer.

When comparing with different methods, we follow the instruc-
tions in Section 6.1 and assign k = 3 tasks using each method in par-
allel. There are 360×10 (3.6K), 4K, 10K, and 3.28K assignments
in total for the four datasets. We show the Accuracy after all assign-
ments and record the worst case assignment time in Figures 8(a)(b).
We have the following observations: (1) Baseline performs worst
as it randomly assigns tasks and does not consider the tasks’ truth
information or the coming worker’s quality; (2) AskIt! considers
tasks’ truth in assignment, but does not take worker’s quality into
account; (3) QASCA performs better as it considers both the tasks’
truth and worker’s quality in assignment, but it does not take the
domain information of tasks and workers into account; (4) IC cap-
tures a worker’s quality for answering different tasks; however, it

10

 50

 60

 70

 80

 90

 100

Item 4D QA SFV

A
c
c
u
ra

c
y
 (

%
)

(a) Effectiveness (Accuracy)

 0

 2

 4

 6

 8

 10

Item 4D QA SFV

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

(b) Efficiency (Execution Time)

MV ZC DS IC FC DOCS

Figure 5: Comparisons on TI.

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

#
w

o
rk

e
rs

 i
n

 t
h

e
 b

in

The i-th bin (1<= i <= 10)

(a) Statitstics of q
w
k (1<= k <= 4)

NBA
Food
Auto

Country

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

Y
:

e
s
t

q
u

a
lit

y
 (

 q
w k

)

X: true quality (q
~w

k)

(b) Quality Calibration

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

Y
:

e
s
t

q
u

a
lit

y
 (

 q
w 1

)

X: true quality (q
~w

1)

(c) Calibration in NBA (d1)

Figure 6: Case Studies of Worker Qualities on Dataset Item.

 0

 200

 400

 600

 800

 0 5 10 15 20

E
x
e

c
u

ti
o
n

 T
im

e
 (

s
)

#Golden Tasks (n’)

(a) Comparison

DOCS
Enumearation

 0

 0.1

 0.2

 0.3

 0.4

1K 4K 7K 10K

E
x
e

c
u

ti
o
n

 T
im

e
 (

s
)

#Golden Tasks (n’)

(b) Scalability (Simulation)

m = 10
m = 20
m = 50

Figure 7: Golden Tasks Selection (Simulation).

 50

 60

 70

 80

 90

 100

Item 4D QA SFV

A
c
c
u
ra

c
y
 (

%
)

(a) Effectiveness (Accuracy)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Item 4D QA SFV

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

(b) Efficiency (Execution Time)

BaseLine AskIt! IC QASCA D-Max DOCS

 0

 0.05

 0.1

 0.15

 0.2

0 2K 4K 6K 8K 10K

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

#Tasks (n)

(c) Scalablity of OTA (Simulation)

k = 5
k = 10
k = 50

Figure 8: Online Task Assignment (OTA) Comparisons.

selects k tasks such that the worker has the highest quality to an-
swer, which may assign tasks that are already confident enough.
Furthermore, it restricts that each task should be answered with the
same times, which does not consider that the assignments for the
easy tasks can be saved for hard tasks; (5) although D-Max uses the
TI (Section 4) to infer truth, it selects k tasks with the matching do-
main to the coming worker, which may assign tasks that are already
confident enough; (6) DOCS performs the best, outperforming the
best of other competitors consistently on all datasets. The reason
is that we consider three factors: tasks’ truth, worker’s quality and
the domain information. We estimate the benefit if a task will be
assigned and answered by the worker, and selects the optimal k
tasks which lead to the highest benefits; (7) all methods can finish
the assignment efficiently, as it can be seen in Figure 8(b) that the
worst case assignment is within 0.02s.
Scalability of OTA (Simulation). We generate n tasks withm = 20.
Then we randomly generate the coming worker w’s quality and the
matrixM(i) for each task ti. Finally k tasks are assigned to worker
w by running methods in Section 5.1. We vary n ∈ [0, 10K],
k ∈ {5, 10, 50} and record the time in Figure 8(c). It can be
seen that the assignment time increases linearly with n, which cor-
responds to the complexity O(nm`2). We can also observe that
the assignment time is independent of k. This is because that we
use PICK algorithm [7] to select top k tasks with highest benefits,
which is slightly affected by k. The assignment is efficient, and it
can be finished within 0.2s with large data (n = 10K and k = 50).

7. RELATED WORKS
Crowdsourced Data Management. With the development in crowd-
sourcing (see a survey [27]), several platforms are built (e.g., AMT [3],
CrowdFlower [13], ChinaCrowd [4]), enabling users to publish tasks
and crowd workers to perform tasks. To facilitate query process-
ing, crowdsourced databases (e.g., CrowdDB [19], Qurk [31]) are
built on top of crowdsourcing platforms to support crowdsourced
queries, e.g., join [43, 45, 9], selection [34], top-k [14], etc.
Task Model. Most existing crowdsourcing works [16, 15, 54,
8, 34] do not differentiate between tasks. Recently, [46] models
the difficulty in tasks, while [18] and [30] exploit the diverse do-
mains in each task using topic models (i.e., LDA [6] and Twit-
terLDA [51]). However, [18, 30] require a user to input the number
of latent domains and cannot capture a task’s related domain(s) ex-
plicitly and correctly, without considering the semantics in texts.
We leverage the knowledge base (i.e., Freebase [20]), which has
rich contextual and semantics information and can capture a task’s
diverse domain(s) in an explicit and accurate way. Note that there
are other works [52, 49] that model a task and worker’s diverse do-
mains, but they do not consider knowledge base and leverage the
external information, e.g., an answer with thumbs-up and thumbs-

down voted by other workers. However, in reality the external in-
formation is hard to get, thus we do not assume them available and
only leverage tasks’ text descriptions and workers’ answers. There
are also some crowdsourcing works [11, 5] that consider knowl-
edge bases, but they focus on different perspectives, e.g., [11] stud-
ies data cleaning and [5] focuses on crowd mining.
Truth Inference. Existing works [16, 15, 18, 30, 46, 56, 28] often
model a worker’s quality in order to enable truth inference. The ba-
sic idea is that the answer given by high quality workers is trusted
in deriving each task’s truth. A worker’s quality can be modeled
in different ways. Majority Voting does not consider a worker’s
quality and regards each worker as equal. ZC [16] and [46] treat a
worker’s quality as a value, while DS [15] uses a matrix to model
a worker’s quality. [56] leverages the idea of minimax entropy and
models the answer given by a worker to a task as a probability
distribution. IC [18] captures diverse latent domains in tasks, and
models the worker’s quality in answering each task explicitly; sim-
ilarly, FC [30] models a worker as a vector whose size is equal to
the number of latent domains, and captures a worker’s quality in
answering tasks related to each latent domain. DOCS exploits the
inherent relations between tasks’ truth and workers’ qualities. As
shown in our experiments, IC and FC are outperformed by DOCS,
even if tasks’ true domains have been assigned to them in advance.

Our iterative truth inference algorithm (Section 4.1) is related to
EM solutions [16, 15], which also iteratively updates parameters
until they converge. However, as shown in our experiments (Sec-
tion 6), our method outperforms EM solutions significantly. This
is mainly because neither the task’s domain vector nor the worker’s
expertise on different domains are considered in those works. Also,
this algorithm converges quickly (less than 20 iterations) in our ex-
periments (Section 6), and is thus highly practical.
Online Task Assignment. This problem of how to assign k tasks
to a worker is of fundamental importance in crowdsourcing. In [43,
19, 53], a task is randomly selected; also, each task has to be an-
swered by the same number of workers. Recently, AskIt! [8] uses
previous tasks’ answers to assign the k most uncertain tasks to the
worker. In IC [18], these k tasks are chosen in such a way that a
worker has the k highest quality values of answering them. It also
requires each task to be answered by the same number of workers.
QASCA [54] selects k tasks that attain the highest improvement in
quality. In [21, 22, 41], the target is to maximize the overall utility
given a fixed budget: [21] models a bipartite graph between work-
ers and tasks, and designs an incentive-compatible mechanism for
assignment; [22] extends the online adwords problem and sets the
number of times that each task should be answered; [41] models the
problem by proposing a multi-armed bandit model and devises effi-
cient solutions to solve it. Different from the above works, DOCS
considers three factors in assignment: truth estimation of tasks, di-

11

versity of domains, and a worker’s quality. Intuitively, DOCS as-
signs a task to the worker if its domains are within the worker’s
expertise, and its truth cannot be confidently inferred yet.

Knowledge-intensive crowdsourcing solutions require external
information, e.g., workers’ wages and acceptance ratio in [37], and
a complete skill taxonomy tree, a worker’s exact skills and the re-
quired skills of tasks in [32], which are hard to obtain in real crowd-
sourcing platforms (e.g., AMT [3]). While our work considers typ-
ical crowdsourcing settings used in existing platforms.

8. CONCLUSIONS
In this paper we build a system DOCS, which contains three

main modules: DVE, TI and OTA. After a requester submits tasks,
DVE leverages the KB to interpret the domains for each task, and
then DOCS interacts with AMT [3] adaptively. When a worker
submits answers, TI is run to infer workers’ qualities and tasks’
truth, by exploring their inherent relations. When a worker requests
for new tasks, OTA dynamically assigns k tasks with the highest
benefits to the worker. We conduct experiments to test the effec-
tiveness and efficiency, showing that DOCS outperforms existing
state-of-the-art methods on the three modules.
Acknowledgement. We would like to thank the reviewers for the
insightful comments. Guoliang Li was supported by 973 Program
of China (2015CB358700), NSF of China (61373024, 61632016,
61422205, 61472198), Shenzhou, Tencent, FDCT/116/2013/A3,
and MYRG105 (Y1-L3)-FST13-GZ. Reynold Cheng and Yudian
Zheng were supported by the Research Grants Council of Hong
Kong (RGC Projects HKU 17229116 and 17205115) and the Uni-
versity of Hong Kong (Projects 102009508 and 104004129).

9. REFERENCES
[1] https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/amt-ui.pdf.
[2] http://answers.yahoo.com/question/index?qid=20071211155603AAKwtyr.
[3] Amazon mechanical turk. https://www.mturk.com/.
[4] Chinacrowd. http://www.chinacrowds.com.
[5] Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov, and A. Somech.

Oassis: query driven crowd mining. In SIGMOD, pages 589–600, 2014.
[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of

Machine Learning Research, 3(Jan):993–1022, 2003.
[7] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Time bounds for

selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.
[8] R. Boim, O. Greenshpan, T. Milo, S. Novgorodov, N. Polyzotis, and W. C. Tan.

Asking the right questions in crowd data sourcing. In ICDE, pages 1261–1264,
2012.

[9] C. Chai, G. Li, J. Li, D. Deng, and J. Feng. Cost-effective crowdsourced entity
resolution: A partial-order approach. In SIGMOD, pages 969–984, 2016.

[10] X. Cheng and D. Roth. Relational inference for wikification. In EMNLP, pages
1787–1796, 2013.

[11] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye.
Katara: A data cleaning system powered by knowledge bases and
crowdsourcing. In SIGMOD, pages 1247–1261, 2015.

[12] Compositions. http://mathworld.wolfram.com/Composition.html.
[13] CrowdFlower. http://crowdflower.com/.
[14] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd for top-k and

group-by queries. In ICDT, pages 225–236, 2013.
[15] A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer

error-rates using the em algorithm. Applied statistics, pages 20–28, 1979.
[16] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux. Zencrowd: leveraging

probabilistic reasoning and crowdsourcing techniques for large-scale entity
linking. In WWW, pages 469–478, 2012.

[17] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society.
Series B (methodological), pages 1–38, 1977.

[18] J. Fan, G. Li, B. C. Ooi, K.-l. Tan, and J. Feng. icrowd: An adaptive
crowdsourcing framework. In SIGMOD, pages 1015–1030, 2015.

[19] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb:
answering queries with crowdsourcing. In SIGMOD, pages 61–72, 2011.

[20] Freebase. https://www.freebase.com/.
[21] G. Goel, A. Nikzad, and A. Singla. Allocating tasks to workers with matching

constraints: truthful mechanisms for crowdsourcing markets. In WWW, pages
279–280, 2014.

[22] C.-J. Ho and J. W. Vaughan. Online task assignment in crowdsourcing markets.
In AAAI, pages 45–51, 2012.

[23] H. Hu, G. Li, Z. Bao, Y. Cui, and J. Feng. Crowdsourcing-based real-time urban
traffic speed estimation: From trends to speeds. In ICDE, pages 883–894, 2016.

[24] H. Hu, Y. Zheng, Z. Bao, G. Li, J. Feng, and R. Cheng. Crowdsourced POI
labelling: Location-aware result inference and task assignment. In ICDE, pages
61–72, 2016.

[25] H. Ji, R. Grishman, H. T. Dang, K. Griffitt, and J. Ellis. Overview of the tac
2010 knowledge base population track. In TAC, 2010.

[26] S. Kullback and R. A. Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

[27] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced data management:
A survey. TKDE, 28(9):2296–2319, 2016.

[28] Y. Li, J. Gao, C. Meng, Q. Li, L. Su, B. Zhao, W. Fan, and J. Han. A survey on
truth discovery. SIGKDD Explorations, 17(2):1–16, 2015.

[29] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. Cdas: a
crowdsourcing data analytics system. PVLDB, 5(10):1040–1051, 2012.

[30] F. Ma, Y. Li, Q. Li, M. Qiu, J. Gao, S. Zhi, L. Su, B. Zhao, H. Ji, and J. Han.
Faitcrowd: Fine grained truth discovery for crowdsourced data aggregation. In
KDD, pages 745–754, 2015.

[31] A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced databases:
Query processing with people. In CIDR, pages 211–214, 2011.

[32] P. Mavridis, D. Gross-Amblard, and Z. Miklós. Using hierarchical skills for
optimized task assignment in knowledge-intensive crowdsourcing. In WWW,
pages 843–853, 2016.

[33] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience, 1988.

[34] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and
J. Widom. Crowdscreen: algorithms for filtering data with humans. In
SIGMOD, pages 361–372, 2012.

[35] QA. https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=76.
[36] L. Ratinov, D. Roth, D. Downey, and M. Anderson. Local and global algorithms

for disambiguation to wikipedia. In ACL, pages 1375–1384, 2011.
[37] S. B. Roy, I. Lykourentzou, S. Thirumuruganathan, S. Amer-Yahia, and G. Das.

Task assignment optimization in knowledge-intensive crowdsourcing. VLDBJ,
24(4):467–491, 2015.

[38] C. E. Shannon. A mathematical theory of communication. SIGMOBILE Mob.
Comput. Commun. Rev., 5(1):3–55, 2001.

[39] W. Shen, J. Wang, and J. Han. Entity linking with a knowledge base: Issues,
techniques, and solutions. TKDE, 27(2):443–460, 2015.

[40] Technical Report. http://i.cs.hku.hk/~ydzheng2/docs_full.pdf.
[41] L. Tran-Thanh, S. Stein, A. Rogers, and N. R. Jennings. Efficient

crowdsourcing of unknown experts using bounded multi-armed bandits.
Artificial Intelligence, 214:89–111, 2014.

[42] S. Trani, D. Ceccarelli, C. Lucchese, S. Orlando, and R. Perego. Dexter 2.0-an
open source tool for semantically enriching data. In ICWS, pages 417–420,
2014.

[43] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity
resolution. PVLDB, 5(11):1483–1494, 2012.

[44] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging transitive
relations for crowdsourced joins. In SIGMOD, pages 229–240, 2013.

[45] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question selection for crowd
entity resolution. PVLDB, 6(6):349–360, 2013.

[46] J. Whitehill, T.-f. Wu, J. Bergsma, J. R. Movellan, and P. L. Ruvolo. Whose
vote should count more: Optimal integration of labels from labelers of unknown
expertise. In NIPS, pages 2035–2043, 2009.

[47] Wikipedia. https://en.wikipedia.org/wiki/Category:Main_topic_classifications.
[48] Yahoo Answers. https://answers.yahoo.com/dir/index.
[49] L. Yang, M. Qiu, S. Gottipati, F. Zhu, J. Jiang, H. Sun, and Z. Chen. Cqarank:

jointly model topics and expertise in community question answering. In CIKM,
pages 99–108, 2013.

[50] X. Zhang, G. Li, and J. Feng. Crowdsourced top-k algorithms: An experimental
evaluation. PVLDB, 9(8):612–623, 2016.

[51] W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li. Comparing
twitter and traditional media using topic models. In ECIR, pages 338–349,
2011.

[52] Z. Zhao, F. Wei, M. Zhou, W. Chen, and W. Ng. Crowd-selection query
processing in crowdsourcing databases: A task-driven approach. In EDBT,
pages 397–408, 2015.

[53] Y. Zheng, R. Cheng, S. Maniu, and L. Mo. On optimality of jury selection in
crowdsourcing. In EDBT, pages 193–204, 2015.

[54] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng. Qasca: A quality-aware task
assignment system for crowdsourcing applications. In SIGMOD, pages
1031–1046, 2015.

[55] S. Zhi, B. Zhao, W. Tong, J. Gao, D. Yu, H. Ji, and J. Han. Modeling truth
existence in truth discovery. In KDD, pages 1543–1552, 2015.

[56] D. Zhou, S. Basu, Y. Mao, and J. C. Platt. Learning from the wisdom of crowds
by minimax entropy. In NIPS, pages 2195–2203, 2012.

12

https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/amt-ui.pdf
http://answers.yahoo.com/question/index?qid=20071211155603AAKwtyr
https://www.mturk.com/
http://www.chinacrowds.com
http://mathworld.wolfram.com/Composition.html
http://crowdflower.com/
https://www.freebase.com/
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=76
http://i.cs.hku.hk/~ydzheng2/docs_full.pdf
https://en.wikipedia.org/wiki/Category:Main_topic_classifications
https://answers.yahoo.com/dir/index

10. APPENDIX
We first show the symbol table in Section 10.1. The detailed

algorithms for TI and golden tasks selection are shown in Sec-
tion 10.2 and 10.3, respectively. We show detailed proofs for The-
orems 1-4 in Sections 10.4-10.7.

10.1 Symbol Table
Table 4 summarizes the notations used in the paper.

Table 4: Table of Notations
Notation Description

domains and tasks
m the number of domains (m = 26 in DOCS)
di the i-th domain (1 ≤ i ≤ m), D = {d1, d2, . . . , dm}
ti the i-th task (1 ≤ i ≤ n), T = {t1, t2, . . . , tn}
rti domain vector for task ti ∈ T , rti = [r

ti
1 , r

ti
2 , . . . , r

ti
m]

entities and concepts (w.r.t. each entity) for a task t
ei the i-th entity for a task t, and Et = {e1, e2, . . . , e|Et|}
c c = max1≤i≤|Et| |pi| (c = 20 in DOCS)
pi the distribution of concepts for entity ei (1 ≤ i ≤ |Et|)
hi,j the indicator concept vector (size m) for j-th concept in ei

workers, answers, and truth
W the set of workers, where each worker w ∈ W
qw worker w’s quality vector, qw = [qw1 , q

w
2 , . . . , q

w
m]

vwi worker w’s answer for task ti, and 1 ≤ vwi ≤ `ti
V (i) the set of workers’ answers for task ti, i.e., V (i) = {vwi }
T (w) the set of tasks answered by worker w, i.e., T (w) = {ti}
v∗i truth for task ti (1 ≤ i ≤ n) and 1 ≤ v∗i ≤ `ti

10.2 Algorithms for Truth Inference (TI)
We first give a detailed algorithm for the iterative approach of TI

(i.e., Section 4.1) in Section 10.2.1, and then address how to extend
it to an incremental algorithm in Section 10.2.2.

10.2.1 Iterative Truth Inference
We give a detailed algorithm for the iterative approach of TI (i.e.,

Section 4.1) in Algorithm 2.

Algorithm 2: Iterative Truth Inference Method

Input: workers’ answers V (i), tasks’ domain vectors rti
(1 ≤ i ≤ n)

Output: truth si (1 ≤ i ≤ n), worker’s quality qw (w ∈ W)
1 Initialize qw for w ∈ W;
2 while true do
3 // Step 1: Inferring the Truth
4 for 1 ≤ i ≤ n do
5 for 1 ≤ k ≤ m, 1 ≤ j ≤ `ti do
6 M(i)

k,j = Pr(v∗i = j | oi = k, V (i)); // Eq. 3 and 4

7 si = r
ti ×M(i); // Matrix Multiplication

8 // Step 2: Estimating Worker Quality
9 for w ∈ W do

10 Compute qw based on Eq. 5;

11 // Check for Convergence
12 if Converged then
13 break;
14 return si for 1 ≤ i ≤ n and qw for w ∈ W;

10.2.2 Incremental Truth Inference
In this part we discuss the detailed incremental algorithm. W.l.o.g.,

assume that worker w answers a task ti with the a-th choice, and
we represented it in a tuple (w, ti, a). To address the problem,

Algorithm 3: Incremental Truth Inference Method

Input: (w, ti, a); rti , V (i), si, M̂
(i)
k,j andM(i)

k,j for 1 ≤ k ≤ m,
1 ≤ j ≤ `ti ; qw and uw for w ∈ W .

Output: V (i), si, M̂
(i)
k,j andM(i)

k,j for 1 ≤ k ≤ m, 1 ≤ j ≤ `ti ;
qw and uw for w ∈ W .

1 s̃i = si; // store the original si
2 // Step 1: Inferring the Truth
3 for 1 ≤ k ≤ m do
4 for 1 ≤ j ≤ `ti do
5 if j = a then
6 M̂(i)

k,j = M̂(i)
k,j · q

w
k ;

7 else
8 M̂(i)

k,j = M̂(i)
k,j ·

1−qwk
`ti−1

;

9 for 1 ≤ j ≤ `ti do
10 M(i)

k,j = M̂(i)
k,j/

∑`ti
j′=1

M̂(i)
k,j′ ;

11 si = r
ti ×M(i);

12 // Step 2: Estimating Worker Quality
13 // Update worker w’s quality
14 for 1 ≤ k ≤ m do
15 qwk = (qwk · u

w
k + si,a · rtik)/(uwk + r

ti
k);

16 uwk = uwk + r
ti
k ;

17 // Update qualities of other workers (w′) who have answered ti before
18 for vw

′
i ∈ V (i) do

19 j = vw
′

i ; // store the choice for illustration
20 for 1 ≤ k ≤ m do
21 qw

′
k = (qw

′
k · u

w′
k − s̃i,j · r

ti
k + si,j · rtik)/uw

′
k ;

22 V (i) = V (i) ∪ {vwi }; // update the set V (i)

23 return V (i), si, M̂
(i)
k,j andM(i)

k,j for 1 ≤ k ≤ m, 1 ≤ j ≤ `ti ; qw

and uw for w ∈ W .

our basic idea is that we only update the parameters that are mostly
related to task ti and worker w, i.e., task ti’s truth and the qualities
of workers who have answered task ti (including the worker w).

In order to facilitate such updates, we store the following param-
eters for a worker w and a task ti, respectively:
• For a worker w, other than the worker w’s quality (qw), we
also store the aggregated weight of each domain for those tasks
answered by w, denoted as uw = [uw1 , u

w
2 , . . . , u

w
m] and each

uwk =
∑
tj∈T (w) r

tj
k ;

• For a task ti, other than the matrixM(i) and its probabilistic truth
si, we also store the numerator of the matrixM(i), which can be
observed in Equation 3, i.e.,

∏
vwi ∈V

(i) Pr(vwi | oi = k, v∗i = j).

We denote it as M̂(i)
k,j , and from Equation 3 it can be inferred that

M(i)
k,j = M̂(i)

k,j/
∑`ti
j′=1 M̂

(i)

k,j′ .
Based on the above discussions, we develop an incremental algo-

rithm in Algorithm 3. Specifically, similar to the iterative approach
(Algorithm 2), it contains two steps:
Step 1: Inferring the Truth (lines 2-11). We first update each
numerator ofM(i)

k,j , i.e., M̂(i)
k,j by considering worker w’s answer

a to task ti: if j = a, then qwk will be multiplied; otherwise, 1−qwk
`ti−1

will be multiplied (lines 4-8). Then we updateM(i) based on the
updated M̂(i) (lines 9-10). Finally the probabilistic truth si will
be updated based on the updatedM(i) (line 11).
Step 2: Estimating Worker Quality (lines 12-21). For this step,
we first update the model for worker w (lines 13-16). Based on
Equation 5, if we store uwk =

∑
tj∈T (w) r

tj
k , then we can derive

qwk · uwk =
∑
tj∈T (w) r

tj
k · sj,vwj . If we consider the new answer a

13

for task ti, then worker w’s quality should be updated as

qwk ←
∑
tj∈T (w) r

tj
k · sj,vwj + si,a · rtik∑

tj∈T (w) r
tj
k + rtik

=
qwk · uwk + si,a · rtik

uwk + rtik
.

For the workers who have answered task ti before (lines 17-20),
we first store the original s̃i (line 1), and then update the worker’s
quality by considering the original and updated s̃i,j (lines 18-20).

After these two steps, we update V (i) (line 21) and return the
updated parameters (line 22).
Time Complexity. For the time complexity of Algorithm 3, the
first step takesO(m · `ti) time, and for the second step, the update
of worker w’s quality (lines 13-16) takes O(m) time, and the up-
date of other workers who answered answered task ti (lines 17-20)
takesO(m·|V (i)|) time. So in total it takesO(m·max{`ti , |V (i)|})
time. Considering that m and `ti are often constants, so the time
complexity is constrained by the number of answers already ob-
tained for task ti (bounded by |W|).

10.3 Algorithm for Golden Tasks Selection
We give a detailed algorithm for golden tasks selection (Sec-

tion 5.2) in Algorithm 4.

Algorithm 4: Golden Tasks Selection
Input: n′ (#golden tasks to be selected), tasks ti (1 ≤ i ≤ n)
Output: G

1 for 1 ≤ k ≤ m do
2 n′k = b

∑n
i=1 r

ti
k /n · n

′c;
3 while n′ −

∑m
k=1 n

′
k > 0 do

4 ind =

mink {
n′k+1

n′ · ln
(n′k+1)·n
n′·
∑n

i=1 r
ti
k

+
∑
j 6=k

n′j
n′ · ln

n′j ·n

n′·
∑n

i=1 r
ti
j

};

5 n′ind = n′ind + 1;
6 G = ∅;
7 for 1 ≤ k ≤ m do
8 G = G ∪ {a set of n′k tasks with the highest values of rtik };
9 return G;

10.4 Proof for Theorem 1
THEOREM 1 (WORKER QUALITY UPDATE). If qwk and uwk are

updated as (q̂wk · ûwk + qwk · uwk)/(ûwk + uwk), and (ûwk + uwk),
respectively, then the quality of worker w is correctly updated.

PROOF. Let T̂ (w) denote the set of tasks answered by w previ-
ously. If we consider T (w), i.e., the set of newly published tasks
answered by w. Then based on Equation 5, the worker w’s quality
qwk (1 ≤ k ≤ m) can be updated as

q̂wk ·
∑
t∈T̂ (w) r

t
k +

∑
ti∈T (w) r

ti
k · si,vwi∑

t∈T̂ (w) rtk +
∑
ti∈T (w) r

ti
k

.

As
∑
ti∈T (w) r

ti
k · si,vwi = qwk ·

∑
ti∈T (w) r

ti
k , thus by introduc-

ing another statistic ûwk =
∑
t∈T̂ (w) r

t
k and uwk =

∑
ti∈T (w) r

ti
k ,

we can maintain worker’s quality qwk and uwk as (q̂wk · ûwk + qwk ·
uwk)/(ûwk + uwk), and (ûwk + uwk), respectively.

10.5 Proof for Theorem 2
THEOREM 2. The probability that worker w will give the a-th

choice to task ti is

Pr(vwi = a |V (i)) =
m∑
k=1

rtik ·
[
qwk ·M

(i)
k,a+

1− qwk
`ti − 1

·(1−M(i)
k,a)

]
.

PROOF. Note that we have shown that Pr(vwi = a | V (i)) can
be expressed as the following equation, i.e.,

m∑
k=1

Pr(oi = k)

`ti∑
j=1

Pr(v
w
i = a | oi = k, v

∗
i = j) Pr(v

∗
i = j | oi = k, V

(i)
),

which is essentially∑m

k=1
r
ti
k ·

∑`ti

j=1
M(i)

k,j ·
[
(q

w
k)

1{j=a} ·
(1− qwk
`ti − 1

)1{j 6=a}
]

=
∑m

k=1
r
ti
k ·

[
q
w
k · M

(i)
k,a +

∑
j 6=a

1− qwk
`ti − 1

· M(i)
k,j

]
=
∑m

k=1
r
ti
k ·

[
q
w
k · M

(i)
k,a +

1− qwk
`ti − 1

· (1−M(i)
k,a)

]
.

10.6 Proof for Theorem 3
THEOREM 3. If worker w gives the a-th choice to task ti, then

M(i)|a
k,j =

M(i)
k,j · (q

w
k)1{j=a} ·

(1−qwk
`ti−1

)1{j 6=a}∑`ti
j′=1

M(i)
k,j′ · (q

w
k)

1{j′=a} ·
(1−qw

k
`ti−1

)1{j′ 6=a}
.

PROOF. Note that M(i)|a
k,j means that if the coming worker w

answers the a-th choice for task ti, the task’s original matrix item
M(i)

k,j will become. Let V (i) denote the previous answers given to
ti (without worker w’s answer a). From Equation 3 we know that
M(i)|a

k,j can be updated to

Pr(vw
i = a | oi = k, v∗i = j)

∏
vw′
i
∈V (i) Pr(vw′

i | oi = k, v∗i = j)∑`ti
j′=1

Pr(vw
i = a | oi = k, v∗i = j′)

∏
vw′
i
∈V (i) Pr(vw′

i | oi = k, v∗i = j′)
.

Also, from Equation 3 we know thatM(i)
k,j can be expressed as

M(i)
k,j = C ·

∏
vw
′

i ∈V
(i)

Pr(vw
′

i | oi = k, v∗i = j),

where C, or the denominator of Equation 3, is not related to sub-
script j inM(i)

k,j , thus for any 1 ≤ j′ ≤ `ti , we similarly derive

M(i)
k,j′ = C ·

∏
vw
′

i ∈V
(i)

Pr(vw
′

i | oi = k, v∗i = j′).

Considering howM(i)|a
k,j can be updated above, we can derive

M(i)|a
k,j =

Pr(vw
i = a | oi = k, v∗i = j) · M(i)

k,j · C
−1∑`ti

j′=1
Pr(vw

i = a | oi = k, v∗i = j′) · M(i)

k,j′ · C
−1

=
M(i)

k,j · (q
w
k)

1{j=a} ·
(1−qwk
`ti
−1

)1{j 6=a}

∑`ti
j′=1

M(i)

k,j′ · (q
w
k)

1{j′=a} ·
(1−qw

k
`ti
−1

)1{j′ 6=a}
.

10.7 Proof for Theorem 4
THEOREM 4. B(Tk) =

∑
ti∈Tk

B(ti).

PROOF. W.l.o.g., similar to the analysis in main content, we re-
gard Tk as a set that contains k first tasks in T , i.e., Tk = {ti | 1 ≤
i ≤ k}. Then we need to prove B(Tk) =

∑k
i=1 B(ti). In this

case, |Φ| =
∑k
i=1 `ti , and we decompose B(Tk) (Equation 10)

into two parts: the first part focuses on benefit related to t1, and
the second part focuses on benefits related to other tasks (i.e., ti for
2 ≤ i ≤ k). For each part, we represent it as a summation over `t1

14

components, where the j-th component (1 ≤ j ≤ `t1) considers
that φ1 = j, i.e.,

B(Tk) =
`t1∑
j=1

∑
φ∈Φ s.t. φ1=j

(
H(s1)−H(rt1 ×M(1)|j)

)
·

Pr(vw1 = j | V (1)) ·
k∏
i=2

Pr(vwi = φi | V (i))

+

`t1∑
j=1

∑
φ∈Φ s.t. φ1=j

[k∑
i=2

(
H(si)−H(rti ×M(i)|φi)

)]
·

Pr(vw1 = j | V (1)) ·
k∏
i=2

Pr(vwi = φi | V (i))

=

`t1∑
j=1

(
H(s1)−H(rt1 ×M(1)|j)

)
· Pr(vw1 = j | V (1))

+
∑

φ∈Φ s.t. φ1=j

[k∑
i=2

(
H(si)−H(rti ×M(i)|φi)

)]
·
k∏
i=2

Pr(vwi = φi | V (i))

= B(t1)

+
∑
φ∈Φ′

[k∑
i=2

(
H(si)−H(rti ×M(i)|φi)

)]
·
k∏
i=2

Pr(vwi = φi | V (i)),

where Φ′ contains all possible answers for the first k tasks other
than t1, i.e., |Φ′| =

∏k
i=2 `ti , and we denote each φ ∈ Φ′ as

φ = [φ2, φ3, . . . , φk], where each 1 ≤ φi ≤ `ti (2 ≤ i ≤ k).
Then we know that B(Tk) = B(t1) + B(Tk−1), where Tk−1 =
{ti | 2 ≤ i ≤ k}. Based on mathematical induction, we can de-
rive B(Tk) =

∑k
i=1 B(ti). Thus we have proved that if Tk con-

tains the first k tasks in T , we have B(Tk) =
∑k
i=1 B(ti). It

can be generalized to any Tk, which is our theorem, i.e., B(Tk) =∑
ti∈Tk

B(ti).

15

	Introduction
	Data Model
	Domain Vector Estimation
	Challenges in Computing Domain Vector
	Our Solution

	Truth Inference
	Iterative Approach
	Practical Truth Inference

	Online Task Assignment
	Online Task Assignment
	Selecting Golden Tasks

	Experiments
	Settings
	Evaluating Domain Vector Estimation
	Evaluating Truth Inference
	Evaluating Online Task Assignment

	Related Works
	Conclusions
	References
	Appendix
	Symbol Table
	Algorithms for Truth Inference (TI)
	Iterative Truth Inference
	Incremental Truth Inference

	Algorithm for Golden Tasks Selection
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Theorem 3
	Proof for Theorem 4

