
Managing the Quality of Crowdsourced
Databases

by

YUDIAN ZHENG

A thesis submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

at The University of Hong Kong

August 2017

Abstract of thesis entitled

“Managing the Quality of Crowdsourced Databases”

Submitted by

YUDIAN ZHENG

for the degree of Doctor of Philosophy

at The University of Hong Kong

in August 2017

Many important data management and analytics tasks cannot be completely

addressed by automated processes. For example, entity resolution, sentiment

analysis, and image recognition can be enhanced through the use of human in-

put. Crowdsourcing platforms are an effective way to harness the capabilities of

the crowd to apply human computation for such tasks. In recent years, crowd-

sourced data management has become an area of increasing interest in research

and industry.

Typical crowd workers are often associated with a large variety of expertise,

background, and quality. As such, the crowdsourced database, which collects

information from these workers, may be highly noisy and inaccurate. Thus it is

of utter importance to manage the quality of crowdsourced databases. In this

thesis, we identify and address two fundamental problems in crowdsourced

quality management: (1) Task Assignment, which selects suitable tasks and as-

signs to appropriate crowd workers; (2) Truth Inference, which aggregates an-

swers obtained from crowd workers to infer the final result.

For the task assignment problem, we consider two common settings adopted

in existing crowdsourcing solutions: task-based and worker-based. In the task-

based setting, given a pool of n tasks, we are interested in which of the k tasks

should be assigned to a worker. A poor assignment may not only waste time

and money, but may also hurt the quality of a crowdsourcing application that

depends on the workers’ answers. We propose to consider evaluation metrics

(e.g., Accuracy and F-score) that are relevant to an application and we explore

how to optimally assign tasks in an online manner. In the worker-based setting,

given a monetary budget and a set of workers, we study how workers should

be selected, such that the tasks in hand can be accomplished successfully and

economically. We observe that this is related to the aggregation of workers’

qualities, and propose a solution that optimally aggregates the qualities from

different workers, which is fundamental to selecting workers.

For the truth inference problem, although there exist extensive solutions,

we find that they are not compared extensively under the same framework, and

it is hard for practitioners to select appropriate ones. We conduct a detailed

survey on 17 existing solutions, and provide an in-depth analysis from various

perspectives.

Finally, we integrate the task assignment and truth inference in a unified

framework, and apply them to two crowdsourcing applications, namely image

tagging and question answering. For image tagging, where a worker is asked

to answer the task, we select the correct label(s) among multiple given choices.

We identify workers’ unique characteristics in answering multi-label tasks, and

study how it can help to solve the two problems. For question answering, where

workers may have diverse qualities across different domains. For example, a

worker who is a basketball fan should have better quality for the task of labeling

a photo related to ‘Stephen Curry’ than the one related to ‘Leonardo DiCaprio’. We

leverage domain knowledge to accurately model a worker’s quality, and apply

them to addressing the two problems.

An abstract of exactly 492 words

Declaration

I declare that this thesis represents my own work, except where due acknowl-

edgement is made, and that it has not been previously included in a thesis,

dissertation or report submitted to this University or to any other institution for

a degree, diploma or other qualifications.

.

YUDIAN ZHENG

August 2017

i

ii

List of Publications

1. [Research] * Yudian Zheng, Jiannan Wang, Guoliang Li, Reynold Cheng,

Jianhua Feng.

QASCA: A Quality-Aware Task Assignment System for Crowdsourcing Applications.

In SIGMOD’15: Proceedings of the 2015 ACM International Conference on Man-

agement of Data, Pages 1031-1046, 2015.

2. [Research] * Yudian Zheng, Reynold Cheng, Silviu Maniu, Luyi Mo.

On Optimality of Jury Selection in Crowdsourcing.

In EDBT’15: Proceedings of the 18th International Conference on Extending

Database Technology, Pages 193-204, 2015.

3. [Research] * Yudian Zheng, Guoliang Li, Reynold Cheng.

DOCS: Domain-Aware Crowdsourcing System.

In PVLDB’16: Proceedings of the VLDB Endowment VLDB Endowment, Vol-

ume 10, Issue 4, November 2016, Pages 361-372, 2016.

4. [Research] Zhipeng Huang, Yudian Zheng, Reynold Cheng, Yizhou Sun,

Nikos Mamoulis, Xiang Li.

Meta Structure: Computing Relevance in Large Heterogeneous Information Networks.

In KDD’16: Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Pages 1595-1604, 2016.

5. [Research] Huiqi Hu, Yudian Zheng, Zhifeng Bao, Guoliang Li, Jianhua Feng,

Reynold Cheng.

Crowdsourced POI Labelling: Location-Aware Result Inference and Task Assignment.

iii

In ICDE’16: Proceedings of the 32nd International Conference on Data Engi-

neering, Pages 61-72, 2016.

6. [Survey] Guoliang Li, Jiannan Wang, Yudian Zheng, Michael J. Franklin.

Crowdsourced Data Management: A Survey.

In TKDE’16: IEEE Transactions on Knowledge and Data Engineering, Volume

28, Issue 9, February 2016, Pages 2296-2319, 2016.

7. [Research] Xiang Li, Ben Kao, Yudian Zheng, Zhipeng Huang.

On Transductive Classification in Heterogeneous Information Networks.

In CIKM’16: Proceedings of the 25th ACM International on Conference on In-

formation and Knowledge Management, Pages 811-820, 2016.

8. [Research] Zhipeng Huang, Bogdan Cautis, Reynold Cheng, Yudian Zheng.

KB-Enabled Query Recommendation for Long-Tail Queries.

In CIKM’16: Proceedings of the 25th ACM International on Conference on In-

formation and Knowledge Management, Pages 2107-2112, 2016.

9. [Experimental Analysis] * Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua

Shan, Reynold Cheng.

Truth Inference in Crowdsourcing: Is the Problem Solved?

In PVLDB’17: Proceedings of the VLDB Endowment, Volume 10 Issue 5, Jan-

uary 2017, Pages 541-552, 2017.

10. [Tutorial] Guoliang Li, Yudian Zheng, Ju Fan, Jiannan Wang, Reynold Cheng.

Crowdsourced Data Management: Overview and Challenges.

In SIGMOD’17: Proceedings of the 2017 ACM International Conference on Man-

agement of Data, Pages 1711-1716, 2017.

11. [Research] Xiang Li, Yao Wu, Martin Ester, Ben Kao, Xin Wang, Yudian

Zheng.

Semi-supervised Clustering in Attributed Heterogeneous Information Networks.

In WWW’17: Proceedings of the 26th International Conference on World Wide

Web, Pages 1621-1629, 2017.

iv

12. [Research] Guoliang Li, Chengliang Chai, Xueping Weng, Ju Fan, Jian Li,

Yudian Zheng, Yuanbing Li, Xiang Yu, Xiaohang Zhang, Haitao Yuan.

CDB: Optimizing Queries with Crowd-Based Selections and Joins.

In SIGMOD’17: Proceedings of the 2017 ACM International Conference on Man-

agement of Data, Pages 1463-1478, 2017.

13. [Survey] Guoliang Li, Jiannan Wang, Yudian Zheng, Michael J. Franklin.

Crowdsourced Data Management: A Survey (Extended Abstract).

In ICDE’17: Proceedings of the 33rd International Conference on Data Engineer-

ing, Pages 39-40, 2017.

14. [Tutorial] Reynold Cheng, Zhipeng Huang, Yudian Zheng, Jing Yan, Ka Yu

Wong, Eddie Ng.

Meta Paths and Meta Structures: Analysing Large Heterogeneous Information Net-

works.

In APWeb-WAIM’17: Proceedings of the Asia Pacific Web and Web-Age Infor-

mation Management Joint Conference on Web and Big Data, 2017.

Note: Publications marked by * are used in this thesis.

v

vi

Acknowledgements

I would like to thank my supervisor, Dr. Reynold Cheng, for all kinds of sup-

port during these years. Through and far beyond meetings and seminars, he

has enriched my understanding towards research; and I truly believe that ev-

erything I have learnt from him will keep benefiting me in my future career. To

him, I feel extraordinarily grateful.

I am truly thankful to Dr. Guoliang Li, Dr. Jiannan Wang, Dr. Yeye He, Dr.

Cong Yu, Prof. Laks V.S. Lakshmanan, Prof. Ben Kao, Prof. Nikos Mamoulis,

Prof. David W.-L. Cheung, Prof. Michael Franklin, Dr. Yang Yu, Dr. Silviu

Maniu, Dr. Ju Fan, Dr. Yizhou Sun, Dr. Jian Li, Prof. Jianhua Feng, Prof. Zhi-

hua Zhou, Dr. Zhifeng Bao, Dr. Xiaokui Xiao, Prof. Bogdan Cautis and Prof.

Martin Ester for all the collaborations and instructions. They offered valuable

comments and much help, making me a better researcher. I must also thank all

the respectable anonymous reviewers who appreciated and criticized my work,

for they strengthened the work in many aspects.

I appreciate all those friends that I met in University of Hong Kong, Ts-

inghua University, Microsoft Research and Google Research. Shoulder to shoul-

der, we back up each other; side by side, we move forward to the future. I feel

so fortunate to be friends with these great people. I enjoyed very much those

days we had together, and deep inside my heart the unforgettable memory shall

be cherished forever.

My special thanks to my family, without whom I can never make it this

vii

far. My parents, i.e., Meirong Wang and Zhongping Zheng are always ready to

support me, in every possible way they can. Wenshuo Chen, my dear, has all

the way been understanding, encouraging, patient, and unconditionally sup-

portive. To them, my deepest gratitude can be expressed by no word but only

loving them the same way back with my heart and soul.

viii

Contents

Declaration i

List of Publications iii

Acknowledgements vii

Contents ix

List of Figures xvii

List of Tables xxi

List of Algorithms xxiii

1 Introduction 1

1.1 Crowdsourcing Workflow . 3

1.2 Crowdsourcing Framework . 4

1.3 Problems and Contributions in the Thesis 6

1.3.1 Task Assignment Problem (Chapters 3 and 4) 6

1.3.2 Truth Inference Problem (Chapter 5) 11

ix

1.3.3 Using Task Assignment and Truth Inference in Complex

Crowdsourcing Applications (Chapters 6 and 7) 13

1.4 Software, Datasets, Videos . 18

1.5 Thesis Organization . 19

2 Related Works 21

2.1 Overview of Crowdsourced Data Management 21

2.2 Crowdsourcing Platforms . 21

2.3 Task Design . 23

2.4 Crowdsourced Fundamental Techniques 24

2.4.1 Quality Control . 25

2.4.2 Cost Control . 29

2.4.3 Latency Control . 30

2.4.4 Trade-Off . 30

2.5 Crowdsourced Operators . 31

2.6 Crowdsourced Database Systems and Optimization 33

2.7 Focus of the Thesis . 34

3 Quality-Aware Online Task Assignment 37

3.1 Introduction . 37

3.2 QASCA Architecture . 41

3.3 The Task Assignment Problem . 43

3.3.1 Task Model . 43

3.3.2 Task Assignment . 44

3.3.3 The Workflow of QASCA 45

x

CONTENTS

3.4 Evaluating Quality Metrics . 47

3.4.1 Accuracy . 48

3.4.2 F-score . 51

3.5 Online Assignment Algorithms . 60

3.5.1 Accuracy*: Top-K Benefit Algorithm 60

3.5.2 F-score*: Online Assignment Algorithm 61

3.6 Computing the Current and Estimated Distribution Matrices . . . 69

3.6.1 Current Distribution Matrix 69

3.6.2 Parameters . 70

3.6.3 Estimated Distribution Matrix 72

3.7 Experiments . 73

3.7.1 Experiments on Simulated Data 73

3.7.2 Experiments for Real Datasets 79

3.8 Related Work . 88

3.9 Chapter Summary . 89

4 Optimal Jury Selection Problem 91

4.1 Introduction . 91

4.2 Data Model & Problem Definition 96

4.2.1 Data Model . 96

4.2.2 Problem Definition . 97

4.3 Optimal Voting Strategy . 98

4.3.1 Voting Strategies . 98

4.3.2 Jury Quality . 100

4.3.3 Optimal Voting Strategy . 101

xi

4.4 Computing Jury Quality for Optimal Strategy 106

4.4.1 NP-hardness of computing JQ(J, BV, α) 107

4.4.2 Analysis of Computing JQ(J, BV, 0.5) 110

4.4.3 Bucket-Based Approximation Algorithm 112

4.4.4 Approximation Error Bound 116

4.4.5 Incorporation of Prior . 120

4.5 Jury Selection Problem (JSP) . 122

4.5.1 Heuristic Solution . 127

4.6 Experiments . 129

4.6.1 Synthetic Dataset . 130

4.6.2 Real Dataset . 136

4.7 Extensions to Various Task Types and Worker Models 138

4.7.1 Optimal Strategy Extension 139

4.7.2 JQ Computation Extension 140

4.7.3 JSP extension . 146

4.8 Related Works . 149

4.9 Chapter Summary . 150

5 Analysis of Truth Inference 151

5.1 Introduction . 151

5.2 Problem Definition . 153

5.3 Solution Framework . 156

5.4 Important Factors . 159

5.4.1 Task Modeling . 160

5.4.2 Worker Modeling . 161

xii

CONTENTS

5.5 Truth Inference Algorithms . 163

5.5.1 Direct Computation . 164

5.5.2 Optimization . 164

5.5.3 Probabilistic Graphical Model (PGM) 165

5.6 Experiments . 169

5.6.1 Experimental Setup . 170

5.6.2 Crowdsourced Data Quality 172

5.6.3 Crowdsourced Truth Inference 177

5.7 Chapter Summary . 192

6 A Multi-Label Task Crowdsourcing System 195

6.1 Introduction . 195

6.2 The Multi-Label Problem . 200

6.2.1 Data Model . 200

6.2.2 Problem Definition . 202

6.3 Worker Modeling . 204

6.3.1 Worker Models Revisited 204

6.3.2 Selecting Worker Model . 206

6.4 Iterative Truth Inference . 208

6.4.1 General Principle . 208

6.4.2 Iterative Method . 209

6.4.3 Speed-Up Computation . 214

6.5 Label Correlations . 217

6.6 Online Task Assignment . 220

6.7 Experiments . 227

xiii

6.7.1 Settings . 227

6.7.2 Observing Workers’ Real Qualities 230

6.7.3 Truth Inference . 232

6.7.4 Task Assignment . 235

6.7.5 Scalability on Simulated Data 237

6.8 Related Works . 238

6.9 Chapter Summary . 240

7 A Domain-Aware Task Crowdsourcing System 241

7.1 Introduction . 241

7.2 Data Model . 247

7.3 Domain Vector Estimation . 249

7.3.1 Challenges in Computing Domain Vector 250

7.3.2 Our Solution . 252

7.4 Truth Inference . 255

7.4.1 Iterative Approach . 255

7.4.2 Practical Truth Inference . 259

7.5 Online Task Assignment . 264

7.5.1 Online Task Assignment . 264

7.5.2 Selecting Golden Tasks . 270

7.6 Experiments . 272

7.6.1 Settings . 273

7.6.2 Evaluating Domain Vector Estimation 275

7.6.3 Evaluating Truth Inference 279

7.6.4 Evaluating Online Task Assignment 284

xiv

CONTENTS

7.7 Related Works . 287

7.8 Chapter Summary . 288

8 Conclusions and Future Work 291

8.1 Conclusions . 291

8.2 Future Work . 294

Bibliography 299

xv

xvi

List of Figures

1.1 Crowdsourcing Applications. 2

1.2 An Example Entity Resolution Application. 3

1.3 Crowdsourcing Framework. 5

1.4 An Overview of the Thesis. 6

1.5 Online Task Assignment Problem (Chapter 3). 7

1.6 Jury Selection Problem (Chapter 4). 9

1.7 Truth Inference Problem (Chapter 5). 12

1.8 Multi-Label Task (Chapter 6). 14

1.9 Domain-Aware Workers and Tasks (Chapter 7). 16

2.1 Overview of Crowdsourced Data Management. 22

2.2 Quality v.s. Cost v.s. Latency. 25

3.1 The QASCA Architecture. 40

3.2 The Workflow of QASCA. 46

3.3 Evaluating F-Score* (Simulation). 75

3.4 Evaluating Efficiency of Assignments (Simulation). 78

3.5 End-to-End System Comparisons. 87

xvii

3.6 Efficiency and Mean Estimation Deviation. 89

4.1 Optimal Jury Selection System. 92

4.2 An Example of JQ computation for MV and BV. 102

4.3 Expressing A0(V) + A1(V) using R(V) and u(V). 111

4.4 Illustrating the Iterative Approach. 112

4.5 Principle of the Bucket Array. 113

4.6 Illustrating A0(V), A1(V), A0(V), and A1(V). 117

4.7 Illustrating Â0(V) , Â1(V) , Â0(V) , and Â1(V). 118

4.8 End-to-End System Comparisons. 131

4.9 Evaluating Efficiency and Effectiveness of OPTJS. 133

4.10 JQ for Different Strategies. 134

4.11 Evaluating JQ(J, BV, 0.5) Computation. 135

4.12 Real Dataset Evaluation. 137

4.13 Illustrating JQ Calculation for Different t and V. 141

5.1 The Probabilistic Graphical Model Framework. 167

5.2 The Statistics of Worker Redundancy for Each Dataset. 175

5.3 The Statistics of Worker Quality for Each Dataset. 176

5.4 Quality Comparisons on Decision-Making Tasks. 180

5.5 Quality Comparisons on Single-Label Tasks. 181

5.6 Quality Comparisons on Numeric Tasks. 181

5.7 Varying Hidden Test on Decision-Making Tasks. 188

5.8 Varying Hidden Test on Single-Label Tasks. 189

5.9 Varying Hidden Test on Numeric Tasks. 189

xviii

LIST OF FIGURES

6.1 An Example Multi-Label Task. 196

6.2 The Comet Framework. 198

6.3 Histograms of Workers’ Respective Qualities. 207

6.4 Observing Workers’ Real Qualities on Collected Datasets. 231

6.5 Truth Inference (Parameter Settings). 232

6.6 Truth Inference (Effectiveness Comparisons). 234

6.7 Truth Inference (Efficiency Comparisons). 236

6.8 Task Assignment (Effectiveness Comparisons). 236

6.9 Scalability on Simulated Data. 239

7.1 The Architecture of DOCS. 245

7.2 A Run of Computing rt
2. 254

7.3 The Domain Detection Accuracy of Different Methods. 276

7.4 Exploiting Different Aspects of Truth Inference in DOCS. 280

7.5 Truth Inference Comparisons. 281

7.6 Case Studies of Worker Qualities on Dataset Item. 283

7.7 Golden Tasks Selection (Simulation). 284

7.8 Online Task Assignment Comparisons. 285

xix

xx

List of Tables

1.1 Classification of Voting Strategies. 11

3.1 Notations Used in Chapter 3. 48

3.2 The Statistics of Each Application. 81

3.3 Comparisons Between Worker Models. 83

3.4 The Average Quality Improvement (∆̂). 85

3.5 Overall Result Quality (All HITs completed). 86

4.1 Notations Used in Chapter 4. 98

4.2 Classification of Voting Strategies. 99

4.3 Statistics in Different Error Ranges. 133

5.1 An Example Product Dataset. 154

5.2 The Collected Workers’ Answers for All Tasks. 154

5.3 Notations Used in Chapter 5. 156

5.4 Comparisons of Different Truth Inference Methods. 160

5.5 The Statistics of Each Dataset. 170

5.6 The Comparison of Different Methods on Decision-Making Tasks. 178

5.7 The Comparison of Different Methods on Single-Choice Tasks. . . 179

xxi

5.8 The Comparison of Different Methods on Numeric Tasks. 179

5.9 The Benefit (∆) with Qualification Test on Decision-Making Tasks. 185

5.10 The Benefit (∆) with Qualification Test on Single-Label Tasks. . . 185

5.11 The Benefit (∆) with Qualification Test on Numeric Tasks. 185

6.1 An Example of Objects and Candidate Label Sets. 200

6.2 Workers’ Answers for Objects. 201

6.3 Truth and Votes for All (Object, Label) Pairs. 201

6.4 Notations Used in Chapter 6. 203

6.5 Contingency Table of A Worker. 204

6.6 Each Worker’s Contingency Table. 205

6.7 Workers’ Qualities. 205

6.8 The Statistics of Datasets. 229

7.1 Workers’ Qualities and Answers for Task t1. 248

7.2 Notations Used in Chapter 7. 249

7.3 The Information Generated for Task t. 250

7.4 The Efficiency of Heuristics on Domain Vector Estimation. 278

xxii

List of Algorithms

1 Measure the Quality of Matrix Q for F-score (Chapter 3). 59

2 F-score Online Assignment (Chapter 3). 67

3 Update (Chapter 3). 68

4 EstimateJQ (Chapter 4). 114

5 GetBucketArray (Chapter 4). 115

6 Pruning Techniques (Chapter 4). 115

7 JSP (Chapter 4). 128

8 Swap (Chapter 4). 130

9 GetBucketSize (Chapter 4). 142

10 EstimateGeneralJQ (Chapter 4). 144

11 Solution Framework (Chapter 5). 159

12 Iterative Computation (Chapter 6). 213

13 Incremental Computation (Chapter 6). 215

14 Domain Vector Computation (Chapter 7). 253

15 Iterative Truth Inference (Chapter 7). 256

16 Incremental Truth Inference (Chapter 7). 262

17 Golden Tasks Selection (Chapter 7). 272

xxiii

xxiv

1

Chapter 1

Introduction

Existing algorithms often cannot effectively address computer-hard tasks

such as entity resolution [35, 79, 139, 176, 189, 192, 195, 199], sentiment analy-

sis [124, 125, 142, 222], and image recognition [172, 198, 205], which can benefit

from the use of human cognitive ability. Crowdsourcing is an effective way

to address such tasks by utilizing hundreds of thousands of ordinary workers

(i.e., the crowd). Furthermore, access to crowd resources has been made eas-

ier due to public crowdsourcing platforms, such as Amazon Mechanical Turk

(AMT) [1], CrowdFlower [5] and Upwork [10]. As reported by the AMT in Au-

gust 2012, over 500K workers from 190 countries worked on tasks. The large

number of workers and HITs have motivated researchers to develop solutions

to streamline the crowdsourcing process (see survey [116], book [135], and tu-

torials [13,36,53,72,73,94,117]). Thus, due to the increasing interests, data man-

agement in crowdsourcing has become an active area in both industry and re-

search.

There are many successful applications that utilize crowdsourcing to solve

computer-hard tasks. For example, in Figure 1.1(a), Von Ahn et al. digitized

printed material by getting Internet users to transcribe words from scanned

texts [190]. Their method achieved accuracy exceeding 99% and has transcribed

2 CHAPTER 1. INTRODUCTION

(a) reCAPTCHA [190] (b) Game-Driven Crowdsourcing [61]

Figure 1.1: Crowdsourcing Applications.

over 440 million words. As another example, in Figure 1.1(b), Eiben et al. uti-

lized a game-driven crowdsourcing method to enhance a computationally de-

signed enzyme [61].

Crowdsourcing can also benefit data management applications, such as

data cleaning [66, 152, 193], data integration [92, 122, 221], knowledge construc-

tion [14, 17]. Consider entity resolution as an example. Suppose a user (called

the “requester”) has a set of objects and wants to find the objects that refer to the

same entity, perhaps using different names. Although this problem has been

studied for decades, traditional algorithms are still far from perfect [139, 176].

Alternatively, s/he can harness the crowd’s ability to identify the same entity.

To this end, the requester first designs the tasks, and then publishes their tasks

on a crowdsourcing platform such as AMT. Crowd workers who are willing to

perform such tasks (typically for pay or some other reward) accept the tasks, an-

swer them and submit the answers back to the platform. The platform collects

the answers and reports them to the requester. As the crowd has contextual

knowledge and cognitive ability, crowdsourced entity resolution can improve

the quality [79, 186, 189, 192, 195].

CHAPTER 1. INTRODUCTION 3

Table of Products Tasks Workers

Figure 1.2: An Example Entity Resolution Application.

1.1 Crowdsourcing Workflow

In a crowdsourcing platform (e.g., AMT [1]), there are two types of users,

called “workers” and “requesters”, who will deal with tasks. Requesters publish

tasks to the platform; Workers perform tasks and return the results. In the fol-

lowing, we describe the life-cycle of a task from the individual perspective of

requesters and workers.

Figure 1.2 illustrates how the entity resolution application can be applied to

the workflow of crowdsourcing. Given a table of products, suppose a requester

aims to find the pairs of products that refer to the same real-world entity. The

requester needs to first design the user interface of a task, e.g., each task contains

a pair of products, and it asks the crowd to choose whether they are “equal” or

“non-equal”. For example, the first task contains two products, i.e., o1: iPhone

2nd Gen and o2: iPhone Two, and it asks workers whether the two products are

“equal” or “non-equal”. The requester also has to set up some properties of the

tasks, e.g., the price of a task, the number of workers to answer a task, the time

duration to answer a task1. After that, the requester publishes the tasks to the

1Note that the problem of how to set the properties of a task has been studied in existing
works [116], and it is not the focus of the thesis.

4 CHAPTER 1. INTRODUCTION

platform, and collects the answers from the crowd.

From workers’ perspective, they can browse and select the available tasks

published by requesters. Often the unit that a worker interacts with the crowd-

sourcing platform is called a “Human Intelligent Task”, or HIT, which contains

a set of tasks. When accepting a HIT, they have to finish all the tasks in the HIT

within the specified time duration. If a worker has accomplished a HIT, then

the crowdsourcing platform will collect the worker’s answers for the tasks in

the HIT, and the worker will be paid by the specified monetary budget.

1.2 Crowdsourcing Framework

Based on the above discussions, we show the crowdsourcing framework

in Figure 1.3. The requester will deploy tasks and budget to the crowdsourcing

platform (e.g., AMT). The workers will come to interact with the crowdsourcing

platform in two components:

(1) Task Assignment, which assigns tasks to workers. Since workers may have

different backgrounds and diverse qualities on tasks, an intelligence task assign-

ment algorithm will judiciously select suitable tasks to appropriate workers.

Existing works study the task assignment problem by focusing on two settings,

based on the perspectives of tasks and workers:

• Task-based Setting. In this setting, when a worker comes, it studies the

problem that which subset of tasks should be assigned to the coming

worker. It is often called “Online Task Assignment Problem” [85, 86, 138,

164, 222]. Existing platforms such as AMT supports assigning tasks in

the task-based setting. To be specific, we could use the “external-HIT”

way provided by AMT, which embeds the generated HTML pages by our

server into its web frame and workers directly interact with our server

through the web frame. Thus when a worker comes, we can identify the

worker from the individual worker-id (a string of 14 characters) provided

CHAPTER 1. INTRODUCTION 5

by AMT. Finally, we can dynamically batch the selected tasks in a HIT,

and assign to the coming worker.

• Worker-based Setting. In this setting, given a task and a set of candidate

workers, it studies the problem that which subset of workers should be

selected to answer the task. It is often called “Jury Selection Problem” [33,

219]. With the increasing amount of data, large-scale Internet companies

such as Google or Facebook requires human experts to label the data, e.g.,

they want to be sure whether there is a Starbucks coffee in a specific point

of interest (POI) location. Workers with different qualities and budget

requirements come to answer the task, and the problem aims at wisely

selecting a subset of workers, such that the overall quality is maximized

within a given budget constraint.

(2) Truth Inference, which collects workers’ answers and infers the truth of

each task based on considering all collected answers from workers. Note that

workers may yield low quality or even noisy answers, e.g., a malicious worker

will intentionally give wrong answers; workers may also have different levels of

expertise, and an untrained worker may be incapable of accomplishing certain

tasks. Thus, in order to achieve high quality, we need to tolerate crowd errors

and infer high quality results from noisy answers.

Task

Assignmenttasks

Requester

DB

Truth

Inference

tasks

ans
we
rs

Workers

budget

Figure 1.3: Crowdsourcing Framework.

6 CHAPTER 1. INTRODUCTION

Truth Inference

Task Assignment

task-based
setting

[Chapter 3]

worker-based
setting

[Chapter 4]

[Chapter 5]

Image Tagging
(Multi-Label Tasks)

[Chapter 6]

Question Answering
(Domain-Aware Tasks)

[Chapter 7]

Figure 1.4: An Overview of the Thesis.

1.3 Problems and Contributions in the Thesis

In this thesis, we have addressed problems related to the two key compo-

nents in crowdsourcing framework (Figure 1.3), i.e., task assignment and truth

inference. Figure 1.4 shows an overview of the thesis. In general, we first

discuss the details of task assignment (Chapters 3 and 4) and truth inference

(Chapter 5), respectively. Then we study how to combine these two compo-

nents together and apply them in complex crowdsourcing applications (Chap-

ters 6 and 7). Next, we detail each chapter, respectively.

1.3.1 Task Assignment Problem (Chapters 3 and 4)

Chapters 3 and 4 address problems in the task assignment component,

which studies assigning suitable tasks to appropriate workers. As discussed

above, there are two settings: task-based setting and worker-based setting.

• Chapter 3 focuses on the task-based setting, and we address an Online Task

Assignment Problem in [222]:

Problem 1.1 (Online Task Assignment Problem (Chapter 3)). Given a pool of n

tasks, when a worker comes to answer tasks, which set of the k tasks should be batched

CHAPTER 1. INTRODUCTION 7

in a HIT and assigned to the coming worker?

HIT

HIT

Figure 1.5: Online Task Assignment Problem (Chapter 3).

Figure 1.5 gives an example of the problem. Suppose we have n = 4 tasks,

and each HIT contains k = 2 tasks. When a worker comes to answer tasks,

we are interested in which 2-task-combination should be batched in a HIT and

assigned to the coming worker.

In AMT, this issue is usually addressed in an offline manner: the tasks as-

signed to all HITs were decided before they are shown to the workers. As

pointed out in [27, 127], the main drawback of this approach is that the diffi-

culty level of a task is not considered: for an “easy” task, its final result can

be determined even if the current number of answers received from workers

is limited, whereas a more difficult or controversial task may require answers

from more workers. Notice that a requester may only have a limited amount

of budget to pay the workers. It is thus important to decide the task(s) to be

included in a HIT, in order to obtain the best answers under the limited budget.

Moreover, the problem is inherently complex, since finding the best solution for

the task assignment problem can be extremely expensive. Given a pool of n

tasks, there are (n
k) sets of candidate tasks for a HIT. It requires fast assignment

8 CHAPTER 1. INTRODUCTION

response to the worker as the worker may feel bored if waiting for a long time.

Contributions in Solving Online Task Assignment Problem (Problem 1.1)

To solve the problem, we propose a novel online task assignment frame-

work, which takes application-driven evaluation metrics into account. We in-

vestigate two popular evaluation metrics, i.e., Accuracy and F-score, that are

widely used by various crowdsourcing applications [85, 92, 127, 161, 192, 195].

Conceptually, our algorithm enumerates all sets of k tasks. For every set of k

tasks, our solution estimates the improvement in the quality of the answers, if

these tasks are really sent to the coming worker. The set of k tasks that maxi-

mizes the quality improvement will constitute the new HIT. To realize this, we

have to address two key issues:

1. Lack of ground truth. Evaluation metrics, such as Accuracy and F-score,

assume that each task’s ground truth (or true answer) is known. However,

during the task assignment process, it may not be possible to know the

ground truth of a task. Thus, existing evaluation metrics are not readily

used to solve the task assignment problem. We represent the possible true

answer of a task by the distribution matrix, which captures the probability

distributions of true answers. We study how to populate this matrix with

two models, namely Worker Probability (WP) [80, 100, 127, 211] and Con-

fusion Matrix (CM) [19, 92, 200] that are commonly used to describe the

performance of workers. We further incorporate the distribution matrix

into Accuracy and F-score, resulting correspondingly in the proposed two

functions: Accuracy∗ and F-score∗.

2. Expensive evaluation. Finding the best solution for the task assignment

problem can be extremely expensive. Given a pool of n tasks, there are

(n
k) sets of candidate tasks for a HIT. Moreover, due to the incorporation of

the distribution matrix, measuring the quality of the distribution matrix

CHAPTER 1. INTRODUCTION 9

under Accuracy∗ or F-score∗ can be expensive. We explore efficient algo-

rithms for quality measurement. We also propose two respective linear-

time algorithms to find the best set of tasks for assignment.

• Chapter 4 focuses on the worker-based setting, and we study to address the

Jury Selection Problem in [219]:

Problem 1.2 (Jury Selection Problem (Chapter 4)). Given a budget and a set of

workers, where each worker is associated with a quality score and cost requirement, then

which subset of workers should be chosen, such that the overall quality is maximized

within the budget limit?
Optimal Jury Selection SystemDecision Making Task

Is Bill Gates
now the CEO
of Microsoft ?

 YES (70%) NO (30%)

A B C D E F G

(0.77, $9) (0.7, $5) (0.8, $6) (0.65, $7) (0.6, $5) (0.6, $2) (0.75, $3)

All candidate Workers Set (quality, cost)
Budget Optimal Jury Set Quality Required

5 { F, G } 75% 5
10 { C, G } 80% 9
15 { B, C, G } 84.5% 14
20 { A, C, F, G } 86.95% 20

Budget-Quality Table B C G

(0.7, $5) (0.8, $6) (0.75, $3)

Budget 14

Figure 1.6: Jury Selection Problem (Chapter 4).

Figure 1.6 shows a set of seven workers labeled from A to G, where each

worker is associated with a quality and a cost. The quality ranges from 0 to 1, indi-

cating the probability that the worker correctly answers a task. This probability

can be estimated by using her background information (e.g., her performance in

other tasks) [33,127,183]. The cost is the amount of monetary reward the worker

can get upon finishing a task. In this example, A has a quality of 0.77 and a cost

of 9 units. For a jury, the jury cost is defined as the sum of workers’ costs in the

jury and the jury quality (or JQ) is defined as the probability that the result re-

turned by aggregating the jury answers is correct. Given a budget of B units, a

feasible jury is a jury whose jury cost does not exceed B. For example, if B = $20,

then {B, E, F} is a feasible jury, since its jury cost, or $5 + $5 + $2 = $12, is not

larger than $20.

10 CHAPTER 1. INTRODUCTION

To solve the Jury Selection Problem, a naive solution is to compute the JQ

for every feasible jury, and return the one with the highest JQ. However, how to

aggregate workers’ qualities to compute the JQ, and does there exist a solution

that can optimally aggregate workers’ qualities? Moreover, the number of fea-

sible juries is exponentially large. So is it possible to efficiently select the jury

with the highest aggregated quality?

Contributions in Solving Jury Selection Problem (Problem 1.2)

Since the solution to Jury Selection Problem (JSP) is related to the aggrega-

tion of workers’ answers (called “voting strategies”), we investigate an interest-

ing problem: is it possible to find the optimal voting strategy for JSP among all

voting strategies? One simple answer to this problem is to consider all voting

strategies. However, as listed in Table 1.1, the number of existing strategies is

very large. Moreover, multiple new strategies may emerge in the future. We

address this problem by first studying the criteria of a strategy that produce an

optimal solution for JSP (i.e., given a jury, the JQ, or Jury Quality of the strategy

is defined as the highest value among all the possible voting strategies). This is

done by observing that voting strategies can be classified into two major cate-

gories: deterministic and randomized. A deterministic strategy aggregates work-

ers’ answers without any degree of randomness; MV is a typical example of

this class. For a randomized strategy, each answer is returned with some prob-

ability. Using this classification, we present the criteria required for a voting

strategy that leads to the optimal solution for JSP. We discover that BV satis-

fies the requirements of an optimal strategy. In other words, BV is the optimal

voting strategy with respect to JQ, and will consistently produce better quality

juries than the other strategies.

How to solve JSP with BV then? A straightforward solution is to enumerate

all feasible juries, and find the one with the highest value of JQ. However, this

approach suffers from two major questions:

CHAPTER 1. INTRODUCTION 11

Table 1.1: Classification of Voting Strategies.
Deterministic Voting Strategies Randomized Voting Strategies

Majority Voting (MV) [33] Randomized Majority Voting (RMV) [110]
Half Voting [141] Random Ballot Voting [9]

Bayesian Voting (BV) [127] Triadic Consensus [20]
Weighted MV [123] Randomized Weighted MV [123]

· · · · · ·

1. Computing the JQ of a jury for BV requires enumerating an exponentially

large number of workers’ answers. In fact, we show that this problem is

NP-hard;

2. The number of feasible juries is exponentially large.

To solve the first question, we develop a polynomial-time approximation

algorithm, which enables a large number of candidate answers to be pruned,

without a significant loss of accuracy. We further develop a theoretical error

bound of this algorithm. Particularly, our approximate JQ computation algo-

rithm is proved to yield an error of not more than 1%. To tackle the second

question, we leverage a successful heuristic, the simulated annealing heuristic,

by designing local neighborhood search functions. To evaluate our solutions,

we have performed extensive evaluation on real and synthetic crowdsourced

data. Our experimental results show that our algorithms effectively and ef-

ficiently solve JSP. The quality of our solution is also consistently better than

existing works.

1.3.2 Truth Inference Problem (Chapter 5)

• Chapter 5 addresses problem in the truth inference component. To be spe-

cific, [221] focuses on the Truth Inference Problem:

Problem 1.3 (Truth Inference Problem (Chapter 5)). Given workers’ answers col-

lected for all tasks, what is the truth of each task?

12 CHAPTER 1. INTRODUCTION

!"##$%& '(()*)'&)+%

+(,)-.'$* /#'%0*)%1

23 4!5

53 !.)-'6+

!"##$%& '(()*)'&)+%

+(2*+% 7'*$891

23 :++6*$

53 ;$-#")&3')

5

5

5

2

2

5

2%<=$#<>

Figure 1.7: Truth Inference Problem (Chapter 5).

Figure 1.7 gives an example of the truth inference problem. Suppose we

have 2 tasks, which ask about the current affiliations of Micheal Franklin and

Alon Halevy. Three workers come to answer these two tasks, respectively. For

example, the first worker thinks that “B. Chicago” corresponds to the current

affiliation of Michael Franklin.

To infer the truth of each task, a straightforward approach is Majority Vot-

ing (MV), which takes the answer given by majority workers as the truth. How-

ever, the biggest limitation of MV is that it regards all workers as equal. In real-

ity, workers may have different levels of qualities: a high-quality worker care-

fully answers tasks; a low-quality (or spammer) may randomly answer tasks in

order to deceive money; a malicious worker may even intentionally give wrong

answers. Thus it is important to capture each worker’s quality, which can better

infer the truth of each task by trusting more on the answers given by workers

with higher qualities. The database community [63, 89, 118, 119, 127, 131, 219]

and data mining community [21, 47, 48, 100, 104, 126, 161, 182, 197, 200, 226] inde-

pendently study this problem and propose various algorithms. However, these

algorithms are not compared under the same experimental framework and it is

CHAPTER 1. INTRODUCTION 13

hard for practitioners to select appropriate algorithms. So how are these meth-

ods similar and dissimilar? Does there exist a best method, i.e., which can beat

others consistently on various datasets?

Contributions in Solving Truth Inference Problem (Problem 1.3)

Given that there are lots of existing works that solve the truth inference

problem, we provide a comprehensive survey and analyze thoroughly on exist-

ing truth inference algorithms. We find that all of them can be summarized into

a unified framework, which captures the inherent relationships between each

worker’s quality and each task’s truth. Intuitively, if we know each worker’s

quality, then we will pay more (less) trust to the answer given by high (low)

quality workers; on the other hand, if we know each task’s truth, then the

worker will be assigned to a high (low) quality if the answer given by the

worker is similar (dissimilar) to the truth. We also categorize existing meth-

ods in terms of task types, task modeling, worker modeling, and inference techniques.

We conduct a comprehensive comparison of 17 existing representative meth-

ods [21, 47, 48, 100, 104, 118, 119, 126, 161, 182, 197, 200, 226], experimentally com-

pare them on 5 real datasets with varying sizes and task types in real crowd-

sourcing platforms, make a deep analysis on the experimental results, and pro-

vide extensive experimental findings.

1.3.3 Using Task Assignment and Truth Inference in Complex Crowd-

sourcing Applications (Chapters 6 and 7)

Having discussed the problems related to the two components (Figure 1.3),

in Chapters 6 and 7, we study how task assignment and truth inference can

be combined in a unified framework, such that specific crowdsourcing applica-

tions can be benefited.

• Chapter 6 studies image tagging application, which asks workers to give la-

14 CHAPTER 1. INTRODUCTION

Select all labels in the above image.

SUBMIT

tree

sky

people

lake

beach

sun

building

flower

mountain

boat

Figure 1.8: Multi-Label Task (Chapter 6).

bels to an image. Note that existing crowdsourcing studies [92,127,199,211,222]

focus mainly on single-label tasks, which require workers to select a single label

(or choice), e.g., select one label from {positive, neutral, negative} in a sentiment

analysis task. However, an object can have multiple labels. For example, in

image tagging application, an image in Figure 1.8 has tree, sky, and mountain as

labels. Moreover, there are other tagging applications, e.g., if we want to label

movies, a movie Matrix can be labeled with action and sci-fi; similarly, a per-

son Barack Obama can be labeled with president, lawyer, and politician. For these

kinds of applications, we use multi-label tasks in crowdsourcing, i.e., workers

can select more than one label from a set of given labels (or choices).

Although we can transform a multi-label task to several single-label tasks,

this simple approach can generate many tasks, incurring a high cost and la-

tency. For example, the multi-label task in Figure 1.8 is transformed to 10 single-

label tasks, where each task inquiries about whether or not the image con-

tains a certain label (e.g., tree). As reported in [51], compared with single-

label tasks, multi-label tasks enable six times of improvement in terms of hu-

man computation time, without sacrificing much quality. Although some recent

works [29,56,145,147,149,198] focus on solving multi-label tasks in crowdsourc-

ing, this problem is not well addressed. Workers may have different characteris-

CHAPTER 1. INTRODUCTION 15

tics in multi-label tasks: a conservative worker would only select labels that the

worker is certain of, while a venturous worker may select more labels. Thus it

is a challenging problem to design specific task assignment and truth inference

algorithms that can characterize workers’ behaviors in answering multi-label

tasks.

Contributions in Solving Crowdsourced Image Tagging Application

To address it, we design specialized algorithms for the task assignment and

truth inference to deal with multi-label tasks. Next we briefly introduce them,

respectively.

1. Online Task Assignment. When a worker requests tasks, the component

targets at instantly assigning k tasks to the worker. A poor assignment

may not only waste the budget and time, but also spoil the overall qual-

ity. We first measure the uncertainty of each task based on the collected

answers, and then estimate how much uncertainty can be reduced if the

task is really answered by the worker. Finally the k tasks with the high-

est reduction in uncertainty will be assigned. As the worker’s answer to

the task is unknown, to compute its reduction in uncertainty, all possible

answers given by the worker should be considered, which is exponen-

tial (e.g., 2` answers for ` labels). Moreover, to select k tasks (say, out of

n tasks), we have to consider all (n
k) combinations. To reduce the com-

putational complexity, we prove a theorem, which computes the optimal

assignment in linear time.

2. Truth Inference. When a worker submit answers, the component infers

the truth (or correct labels) of each task based on all workers’ answers.

We use a novel worker model, which can capture workers’ diverse char-

acteristics in answering multi-label tasks. As the truth of each task is un-

known, each worker’s model can only be estimated based on the collected

answers. We conduct truth inference in an iterative approach, which can

16 CHAPTER 1. INTRODUCTION

Workers

!"#$%& '#()%)*& +,%-$%.),/-,%

Tasks

!"#$%"&'()*$+,-#(.$/".$0,-)123

&'(04",.5'"45$6'(.$7,8)$2-9(.6:

Figure 1.9: Domain-Aware Workers and Tasks (Chapter 7).

jointly infer all tasks’ truth and workers’ models with the following prin-

ciple: a worker that selects correct labels often will be considered to have

a higher quality; meanwhile, a label that is selected by high quality work-

ers for a task is likely to be a correct label for the task. We study how

to speed-up the computation by designing an incremental approach. We

also leverage the known label correlations to improve the truth inference,

by integrating them into the inference method.

• Chapter 7 focuses on another application, i.e., question answering. In that

application, often different tasks are associated with different domains, which

we call “domain-aware tasks”. For example, Figure 1.9 illustrates three work-

ers and two tasks. Suppose we have three domains: “Sports”, “Politics”, and

“Entertainment”, then worker 1 (Michael Jordan) has high quality on Sports, and

worker 3 (Leonardo DiCaprio) has high quality on Entertainment. For worker 2

(Donald Trump), he may have high qualities on both Politics and Entertainment.

For the task in Figure 1.9, i.e., “Did Michael Jordan win more NBA championships

than Kobe Bryant?”, it is more related to Sports compared to other domains. In-

tuitively, worker 1 should do better than other workers in the task since they

have matching domains, thus the task should be more beneficial to be assigned

CHAPTER 1. INTRODUCTION 17

to worker 1.

Note that a common drawback of existing solutions is that they often over-

look the worker’s ability in different domains. As a matter of fact, workers

have a variety of expertise, skills, and cultural backgrounds. However, there

are a few challenges in exploiting the domain-aware workers and tasks. For

example, how to define the domains? How to exploit the domains in workers

and tasks? How to incorporate the domain-ware information in designing the

intelligent truth inference and task assignment algorithms?

Contributions in Solving Crowdsourced Question Answering Application

To address it, we exploit domain-aware tasks and characterize the domain-

aware task models and worker models, respectively. To be specific, we first

compute the domain-aware model for each task (called “Domain Vector Estima-

tion”) and incorporate the domain-aware task model and worker model to the

design of the task assignment and truth inference component. Next, we briefly

introduce them, respectively.

1. Domain Vector Estimation. This component is responsible for estimating

the related domains of each task, based on the domain information in a

KB. Specifically, an “entity-linking” algorithm [168] can be used, which

extracts entities from the text description of each task. A domain vector

is then computed for these entities, in order to capture how likely a task

belongs to each domain mentioned in a KB.

2. Online Task Assignment. When a worker comes and requests new tasks,

this component assigns tasks to her. A poor assignment may not only

waste budget and time, but also hurt the quality of inference results which

depend on workers’ answers. To judiciously assign tasks, the component

makes decisions based on three factors: (1) the worker’s quality, (2) the

domain vectors of tasks, and (3) how confident each task’s truth can be

18 CHAPTER 1. INTRODUCTION

inferred from previously received answers. Intuitively, we assign a task to

the worker if the task’s domains are the worker’s expertise and its truth

cannot be confidently inferred. The assignment is done online, i.e., tasks

will be assigned to the worker instantly.

3. Truth Inference. When a worker accomplishes tasks and submits an-

swers, the component first stores the worker’s answers into database and

then infers each task’s truth and each worker’s model based on two prin-

ciples: (1) a worker’s answer is trusted, if she is a domain expert on her

submitted tasks; and (2) a worker is a domain expert if she often correctly

answers tasks related to that domain.

1.4 Software, Datasets, Videos

• Software. We have open-sourced the implementations of

(1) Task assignment: http://i.cs.hku.hk/~ydzheng2/crowd_task_assignment/;

(2) Truth inference: http://i.cs.hku.hk/~ydzheng2/crowd_truth_inference/.

• Datasets. We also maintained a list of public crowdsourcing datasets:

http://i.cs.hku.hk/~ydzheng2/crowd_survey/datasets.html.

• Videos. We have given a tutorial related to crowdsourcing data management

in SIGMOD’17 [117]. Thanks to SIGMOD Live, our video has been made public

on youtube:

(1) Part 1: https://www.youtube.com/watch?v=-45JkIVYhvo.

(2) Part 2: https://www.youtube.com/watch?v=ADAp7XMGtjw.

CHAPTER 1. INTRODUCTION 19

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 gives an overview

of related workers in crowdsourced data management. As shown in Figure 1.4,

task assignment and truth inference are two parallel important components in

crowdsourcing. In task assignment, Chapters 3 and 4 focus on the task-based

setting and the worker-based setting, respectively. In truth inference, Chapter 5

focuses on addressing the truth inference problem. Chapters 6 and 7 combine

task assignment and truth inference in a unified framework, and apply to them

to complex crowdsourcing applications. To be specific, Chapter 6 focuses on im-

age tagging application, where multi-label tasks are leveraged to interact with

workers; Chapter 7 focuses on question answering application, where domain-

aware tasks are leveraged to interact with workers. Finally, Chapter 8 concludes

and lists several future works.

20 CHAPTER 1. INTRODUCTION

21

Chapter 2

Related Works

2.1 Overview of Crowdsourced Data Management

Figure 2.1 shows an overview of crowdsourced data management. A re-

quester submits tasks and collects the answers to these tasks by the workers.

In the below sections, we first review related works that follow the bottom-

up order, i.e., Crowdsourcing Platforms (Section 2.2), Task Design (Section 2.3),

Crowdsourcing Fundamental Techniques (Section 2.4), Crowdsourced Opera-

tors (Section 2.5), and Crowdsourced Database Systems and Optimization (Sec-

tion 2.6). Finally, we discuss the focus of the thesis (Section 2.7).

2.2 Crowdsourcing Platforms

There are some existing crowdsourcing platforms, e.g., Amazon Mechan-

ical Turk (AMT) [1], CrowdFlower [5]. Each platform has different goals and

provides different functionalities for requesters and workers. Next, we discuss

each platform, respectively.

• Amazon Mechanical Turk (AMT) [1] is a widely used crowdsourcing plat-

form. AMT focuses on micro-tasks, e.g., labeling an image. A requester can

22 CHAPTER 2. RELATED WORKS

Crowdsourced Operators

Requester

tasks result

Crowdsourced Database Systems and Optimization

Crowdsourcing Platforms

Crowdsourced Fundamental Techniques

Quality Control Cost Control Latency Control

Task Design

Task Type Task Setting

Requesters Workers

Figure 2.1: Overview of Crowdsourced Data Management.

group multiple micro-tasks as a Human Intelligence Task (HIT). The requester

can also set some requirements, e.g., the price of a HIT, the time constraint for

answering a HIT, the expiration time for a job to be available on AMT, and the

qualification test. (1) A requester can build HITs from several different ways: the

requester user interface, AMT Command Line Tools (CLT), and the AMT APIs.

Moreover, requesters can also build their own server to manage the tasks and

embed their tasks into AMT using innerHTML, which is called the “external-

HIT” [7]. When a worker requires a task, AMT transforms the worker informa-

tion to the requester’s server and then the requester can decide what tasks to

assign to the server. When a worker submits an answer to AMT, AMT also de-

livers the answer to the requester. (2) A worker can browse HITs on AMT. Each

HIT has some information, e.g., the description of the task, the price, the key-

words, the qualification test if required, and the requester’s information. After

a worker submits the answers of HITs to the platform, s/he can find the total

earnings and the status of the submitted HITs on the platform.

• CrowdFlower [5] has similar functionalities with AMT, but they still have

some differences. First, CrowdFlower has a quality-control component, and it

CHAPTER 2. RELATED WORKS 23

can also embed the tasks with known ground truth in all tasks, and block a

worker if the worker answers poorly on the tasks. Second, besides publishing

the tasks on its own platform, CrowdFlower also publishes the tasks on other

platforms.

• Other Crowdsourcing Platforms. There are other crowdsourcing platforms.

ChinaCrowd [3] is a multilingual crowdsourcing platform, which supports Chi-

nese and English. Upwork [10] can support macro-tasks, e.g., developing a mo-

bile application. gMission [37] is a spatial crowdsourcing platform that supports

spatial tasks.

2.3 Task Design

There are two factors to consider in designing a task: the type of a task (task

type) and the setting of a task (task setting).

• Task Type. There are several important task types that are widely used in

real-world crowdsourcing platforms.

(1) Decision-Making Task [33,126,219]. Workers select Yes/No as the answer. For

example, in fact checking, a task asks the truth w.r.t. the statement of a fact.

(2) Single-Choice Task [47, 92, 222]. Workers select a single answer from multiple

options. For example, in sentiment analysis, given a review, it asks workers to

select the sentiment of the review (options: Positive, Neutral, Negative).

(3) Multi-Label Task [29, 39, 109]. Workers select multiple answers from multiple

options. For example, given a picture, workers select (multiple) labels from a

set of given options that appear in the picture.

(4) Clustering Task [77,136,192]. Workers group a set of objects into several clus-

ters. For example, in entity resolution, given several objects, the task is to create

groups of objects that refer to the same entity.

(5) Fill-in-blank Task [69, 70]. Workers need to fill-in-blank for an object. For ex-

24 CHAPTER 2. RELATED WORKS

ample, given a professor, workers are asked to fill the university of the specified

professor.

(6) Collection Task [179]. Workers need to collect information, e.g., collecting 100

US universities. Single/multiple choice tasks are closed-world tasks and the

workers only need to select from given options, while fill/collection tasks are

open-world tasks and the workers can provide any results.

• Task Setting. The requester also needs to determine some task settings based

on his/her requirements. There are three main factors to be considered.

(1) Pricing / Incentive Design [75, 171]. The requester needs to price each task,

usually varying from a few cents to several dollars. Note that pricing is a com-

plex game-theoretic problem. Usually, high prices can attract more workers,

thereby reducing the latency; but paying more does not always improve answer

quality [67].

(2) Timing [82]. The requester can set time constraints for a task. For each task,

the requester can set the time bound (e.g., 10 minutes) to answer it, and the

worker must answer it within this time bound.

(3) Quality Control [92, 183]. The requester can select the quality-control tech-

niques provided by the crowdsourcing platform, or design their own specific

methods.

2.4 Crowdsourced Fundamental Techniques

As shown in Figure 2.2, there are three fundamental techniques in crowd-

sourcing, i.e., quality control, cost control and latency control. We review each

one respectively, and finally discuss their trade-offs.

CHAPTER 2. RELATED WORKS 25

Figure 2.2: Quality v.s. Cost v.s. Latency.

2.4.1 Quality Control

Crowdsourcing may yield relatively low-quality results, e.g., a malicious

worker may intentionally give wrong answers, and a worker may have dif-

ferent levels of expertise. To achieve high quality, we need to tolerate errors

and infer high-quality results from noisy answers. As discussed in Chapter 1,

there are two important components in the crowdsourcing framework: (1) Task

Assignment, i.e., assigning suitable tasks to appropriate workers; (2) Truth Infer-

ence, i.e., aggregating workers’ answers to infer the truth of each task. Quality

control is mainly conducted in these two components.

• Task Assignment. There are two settings from the perspectives of tasks and

workers: task-based setting and worker-based setting.

(1) In the task-based setting, when a worker comes, existing works [27, 63, 103,

127,140,222] study how to select the most informative tasks and assign them to

the coming worker, to achieve high overall quality. They are interesting in se-

lecting k out of n tasks and assigning them to the coming worker (Problem 1.1).

26 CHAPTER 2. RELATED WORKS

When a worker comes, [27,127] compute an uncertainty score for each task

based on its collected answers, select the k most uncertain tasks, and assign

them to the worker. There are multiple ways to define the uncertainty. Liu et

al. [127] use a quality-sensitive answering model to define each task’s uncer-

tainty, and Boim et al. [27] leverage an entropy-like method to compute the un-

certainty of each task. Recently, we [222] find that different crowdsourcing ap-

plications may have different ways to define quality. In their approach, a crowd-

sourcing application first specifies a quality metric (e.g., Accuracy, F-score) that

it would like to optimize on its data. To meet the requirement, the assignment

algorithm will decide which k tasks should be assigned according to the speci-

fied metric. Specifically, for each combination of k tasks, it computes how much

quality will be improved if they are assigned to a coming worker, and selects the

combination that can lead to the maximum improvement in quality. There are

some other works [63, 177, 217, 218] that model workers to have diverse skills

among different domains, and model tasks to be related to various domains,

finally they assign to the coming worker with the tasks that have matching do-

mains with the worker.

There are some works that study the task assignment problem in slightly

different settings. Many machine learning algorithms [42, 66, 100, 142, 206, 224]

aim to assign a set of tasks to workers that are most beneficial to their trained

models. Budget allocation, which assumes that there is a fixed cost budget, aims

to optimally allocate the budget to different tasks. Intuitively, difficult tasks

should be allocated with higher budgets. Li et al. [120] focuses on addressing

the budget allocation problem. Gao et al. [74] propose a cost-sensitive model

to decide whether a task can be better solved by humans or machines. Mo et

al. [141] study how to set the plurality (i.e., the number of workers to answer

each task) under a fixed budget.

(2) In the worker-based setting, given a task and a set of workers (with known

qualities), intuitively the workers with high qualities (or having matching skills

CHAPTER 2. RELATED WORKS 27

[217,218] to the task) should be selected. In addition to these factors, worker cost

is another key factor for the worker-based task assignment [33,219], which is the

monetary cost that each worker requires to answer a task. The cost can be indi-

cated by the worker, or learned from the worker’s profiles [33] (e.g., registration

date, academic degree). Considering worker budget, Cao et al. [33] propose the

Jury Selection Problem: Given a task, a set of workers (with known qualities and

costs) and an overall budget, how to select a subset of workers in order to maximize the

task’s quality without exceeding the overall budget? Note that as workers’ answers

are unknown, to solve the problem, we need to consider all possible cases of

workers’ answers. For example, given three workers’ qualities, we aim at com-

puting the aggregated quality, called Jury Quality (JQ) of the three workers w.r.t.

the Majority Voting strategy. As in this case the Majority Voting strategy returns

a task’s result as the answer that receives at least 2 votes (out of all 3 votes), so

in order to compute the JQ, i.e., the probability of correctly returning a result

based on the three workers’ answers w.r.t. Majority Voting strategy, it can be

computed as the probability that at least 2 workers (out of 3) correctly answer

the task, by considering all (3
3)+(

3
2)=4 cases.

Cao et al. [33] propose an algorithm to compute JQ w.r.t. the Majority Vot-

ing strategy. The algorithm has a time complexity of O(|S| · log|S|), where S is

the given set of workers. Recently, we [219] prove that Bayesian Voting is the

optimal strategy under the definition of JQ. That is, given any fixed S, the JQ of

S w.r.t. the Bayesian Voting strategy is not lower than the JQ of S w.r.t. any other

strategy. So given a set of workers, its collective quality (or JQ) w.r.t. Bayesian

Voting strategy is the highest among all voting strategies. [219] further proves

that the computation of JQ w.r.t. the Bayesian Voting strategy is NP-hard. To

reduce the computational complexity, they propose an O(|S|3) approximation

algorithm, within 1% error bound. Based on JQ computation, both of the two

works [33, 219] give the solution to the Jury Selection Problem.

• Truth Inference. To infer the truth of each task, it is important to character-

28 CHAPTER 2. RELATED WORKS

ize each worker’s quality [48, 92, 100, 118, 197, 220]. Some initial works [48, 100]

model each worker as a single value ∈ [0, 1] (called “worker probability”), captur-

ing the probability that the worker will answer tasks correctly. An extension of

worker probability model is to introduce the confidence interval [98, 118] into the

probability, which to some extent models the variance of a worker’s answering

behavior. There are also works [19, 126] that model each worker’s quality as

a confusion matrix, which represents the worker’s ability in answering different

labels, e.g., an optimistic worker tends to answer “positive” to a sentiment anal-

ysis task even if it holds “neutral” sentiment. Some recent works [131, 197, 220]

model the diverse skills of a worker, which captures the worker’s answering abil-

ities for different domains. For example, a sports fan while paying no attention

to politics might answer tasks related to sports more correctly compared with

those related to politics.

In order to infer worker’s quality, there are three ways. (1) The first is to

adopt qualification test, and when a worker comes, he/she is required to answer

qualification test (containing tasks with known ground truth) before the worker

can answer real tasks. Then based on the estimated quality of workers, we can

eliminate/block the low-quality workers to answer tasks [92, 134, 160]. (2) The

second is to use golden tasks, which mix tasks with ground truth into the tasks

assigned to workers. Different from qualification test, workers do not know

which are golden tasks, and they do not perform a test at their first come. The

two approaches both require the ground truth of a subset of tasks to be known

in advance. (3) The third computes each worker’s quality in an unsupervised

manner, i.e., without requiring ground truth to be known [48, 92, 118, 131, 197].

The basic principle is two fold: the workers who have answered tasks cor-

rectly tend to have high qualities; the answers of tasks given by high quality

workers tend to be the true answers. Following these two intuitive princi-

ples, existing works [92, 126, 131, 197] often regard workers’ qualities and tasks’

truth as two sets of parameters, and follow an iterative approach to update

them until convergence. Finally, not only workers’ qualities are computed, but

CHAPTER 2. RELATED WORKS 29

also each task’s truth is obtained. For the techniques, Majority voting directly

computes the truth as the answer given by majority workers, and other meth-

ods adopt an iterative approach. Some of them design an optimization func-

tion with desired goals [118, 119, 226]; others adopt the probabilistic graphical

model [47, 92, 131, 197]. We will summarize different factors of existing truth

inference methods in Chapter 5. We list the task models (e.g., modeling the dif-

ficulty of tasks, the domains in tasks), the worker models as discussed above,

and the techniques used.

2.4.2 Cost Control

The crowd is not free, and a large number of tasks would result in high

costs. For example, in entity resolution, if there are 10K objects, there will be

about 50M pairs. Even if the price per pair is $0.01, it still takes lots of money.

Therefore, a big challenge for crowdsourced data management is cost control.

That is, how to reduce human cost while still keeping good result quality.

There are several cost-control techniques. The first is “pruning”, which first

uses computer algorithms to remove unnecessary tasks and then utilizes the

crowd to answer only the useful ones [189,192,195,196,199]. The second is “task

selection”, which prioritizes tasks with high benefits for crowdsourcing [62, 76,

102,150,154,186,199,209]. The third is “answer deduction”, which crowdsources a

subset of tasks and based on the answers collected from the crowd, deduces the

results of other tasks [15,79,99,189,195,196,212]. The fourth is “sampling”, which

samples a subset of tasks to crowdsource [84, 134, 193]. There are also “miscella-

neous” ways [134, 179], which try to leverage well-designed task interfaces and

pay-as-you-go approach to reduce costs. These cost-control techniques can also

be used together. For example, we can first prune many tasks and then utilize

the task-selection idea to select tasks. There are some specialized cost control

techniques designed to optimize cost for a particular operator. For example,

Marcus et al. [134] proposed a count-based user interface to reduce the number

30 CHAPTER 2. RELATED WORKS

of tasks required for crowdsourced count.

2.4.3 Latency Control

Crowd answers may incur excessive latency for several reasons. For exam-

ple, workers may be distracted or unavailable, the tasks may not be appealing

to enough workers, or the tasks might be difficult for most workers. If the re-

quester has a time constraint, it is important to control latency. There are several

strategies for latency control. The first is pricing [67, 75]. Usually a higher price

attracts more workers and can reduce the latency. The second is latency model-

ing [165, 188]. There are mainly two latency models: the round model [165, 188]

and the statistical model [67,205]. The round model leverages the idea that tasks

can be published in multiple rounds. If there are enough active workers on the

crowdsourcing platform, the latency of answering tasks in each round can be re-

garded as constant time. Thus the overall latency is modeled as the number of

rounds. The statistical model is also used to model latency, which leverages the

collected statistics from previous crowdsourcing tasks to build statistical mod-

els that can capture the workers’ arrival time, the completion time, etc. These

derived models can then be used to predict and perhaps adjust for expected

latency.

2.4.4 Trade-Off

There is a trade-off among cost, quality, and latency. Firstly, the cost-control

techniques may sacrifice the quality. For example, the answer deduction may

reduce the quality if the crowd makes an error in their answers, and pruning

can decrease the quality if some important tasks are pruned as discussed above.

Thus, some studies study how to balance quality and cost [192, 195]. Secondly,

there is also a trade-off between latency and cost. For example, in order to re-

duce cost, some cost-control techniques (e.g., answer detection) have to publish

CHAPTER 2. RELATED WORKS 31

tasks in multiple rounds. However, increasing the number of rounds will lead

to long latency. Thirdly, the similar trade-off also exists between latency and

quality. For example, to increase quality, task assignment assigns hard tasks to

more workers and easy tasks to fewer workers. To achieve this goal, it needs

to select tasks in multiple rounds to better understand the tasks. Thus, a large

number of rounds can improve the quality but reduce the latency. To balance

the trade-off among quality, cost, and latency, existing studies focus on different

problem settings, e.g., optimizing the quality given a fixed cost, minimizing the

cost with a little sacrifice of quality, reducing the latency given a fixed cost, etc.

2.5 Crowdsourced Operators

There are many crowdsourced operators proposed to enable real-world ap-

plications, e.g., Selection [148, 149, 165, 205], Join [35, 45, 76, 187, 189, 196, 199],

Topk/Sort [46, 62, 136, 214], Max/Min [102, 184], Count [134], Collection [152,

179], CrowdFill [152], etc. Various techniques are adopted to optimize the op-

erator’s trade-off among three factors: cost, quality and latency. To obtain high-

quality results, different applications require to use different crowdsourced op-

erators, which have operator-specific optimization goals over three factors: cost,

quality and latency. Next, we discuss these operators, respectively.

• CrowdSelection [148, 149, 165,205]. Given a set of items, crowdsourced selec-

tion identifies items that satisfy a set of constraints, e.g., selecting images that

have both mountains and humans. Existing works can be classified into three

categories: (1) Crowd Filtering [149] (or All-Selection) returns all items that sat-

isfy the given constraints; (2) Crowd Find [165] (or k-Selection) returns k items

that satisfy the given constraints; (3) Crowd Search [205] (or 1-Selection) returns

only one item that satisfies the given constraints. They focus on finding the

answers within a cost or latency constraint.

• CrowdJoin [35, 76, 189, 196, 199]. Join is a very important operator in rela-

32 CHAPTER 2. RELATED WORKS

tional database systems with different types, such as Cross-Join, Theta-Join, and

Outer-Join. Existing crowdsourcing works mainly focus on Equi-Join. Given a

table (or two tables), a crowdsourced Equi-Join is to find all record pairs in the

table (or between two tables) that refer to the same entity. It is rather expensive

to enumerate every pair to ask the crowd, and existing crowdsourcing works

focus on designing user-friendly interfaces [192] or leveraging transitivity rela-

tions [195] to reduce the cost while keeping high quality.

• CrowdSort/Topk [46, 62, 136, 214]. Given a set of items which are comparable

but are hard to be compared by machines, CrowdTopk (or Sort) aims to find

top-k items (or a ranking list) based on a certain criterion, e.g., ages of humans

in the picture. The challenges include tolerating the comparison error and re-

ducing the cost. Existing works propose heap-based methods [46] and hybrid

solutions [136] to address the challenges.

• CrowdMax (CrowdMin) [80, 102, 184]. Crowdsourced Max [184] is a special

case of CrowdTopk where k = 1, which finds the max item in a dataset, e.g.,

finding the most beautiful picture about Great Wall. The tournament algorithm

was proposed to reduce the cost.

• CrowdCount [134]. Crowdsourced Count [134] is to count the number of

items in a dataset that satisfy a given constraint, e.g., counting the number of

birds in a picture. Existing works focuses on designing effective task types and

devising unbiased sampling estimator.

• CrowdCollection [179]. Different from the above-mentioned query operators

which perform queries on a given set of known items, CrowdCollect [179] tries

to collect the unknown items from the crowd, e.g., enumerating the top-100 uni-

versities in US. It focuses on improving the coverage of the collected items and

the challenge is to decide whether the collected items are complete.

• CrowdFill [152]. Similar to CrowdCollect, CrowdFill also tries to collect the

unknown items from the crowd. However, CrowdFill [152] focuses on asking

the crowd to fill the cells in a table. For example, given a table that shows the

CHAPTER 2. RELATED WORKS 33

statistics of football players, it asks workers to fill in the missing cells (e.g., the

position of Lionel Messi). It focuses on achieving high quality, without requiring

too much cost and causing latency.

Note that existing works also study other specific crowdsourced queries,

e.g., Categorize [150], Aggregation [84, 134], Skyline [78, 128, 129], Planning [99,

130,174,175,212], Schema Matching [64,90,144,211], Mining [15–18], and Spatial

Crowdsourcing [12, 101, 156, 175, 212].

2.6 Crowdsourced Database Systems and Optimization

Several crowdsourcing database systems [65, 70, 115, 137, 151] have been

proposed to encapsulate the process of interacting with the crowdsourcing plat-

forms. The basic workflow of query processing consists of query parsing, query

plan generation, optimization, and execution. Given a query, a parser is first ap-

plied and multiple plans can be generated. Then the query optimizer selects the

best query plan, and finally executes the plan. Existing crowdsourcing database

systems focus on query modeling, query operators, and query optimization

techniques. Next we discuss different existing crowdsourced optimization tech-

niques.

• CrowdDB [70] extends SQL and defines a new query language, called Crowd-

SQL, to define which table or attribute should be crowdsourced. In query pro-

cessing, CrowdDB introduces three crowd operators: CrowdProbe (collect miss-

ing information of attributes or new tuples), CrowdJoin (a nested-loop join over

two tables), and CrowdCompare (comparison between two elements). CrowdDB

proposes rule-based optimization techniques for processing queries with mul-

tiple operators.

• Qurk [137] uses an SQL-based query language with user-defined functions

(UDFs) to enable crowdsourced data management. To facilitate users to imple-

ment the UDFs, Qurk has several pre-defined task templates that can generate

34 CHAPTER 2. RELATED WORKS

the UIs for posting different kinds of tasks to the crowd. In query processing,

Qurk focuses on implementing join and sort. It implements a block nested loop

join and crowdsources the tuples which satisfy join conditions. For sort, it im-

plements comparison-based approaches to execute sort. To further accelerate

query processing, it has two important components for cost optimization: task

cache and task model. Task cache maintains the crowdsourced answers from

previous tasks, while task model trains a model to predict the results for the

tasks based on the data that are already collected from the crowd. It uses cost-

based optimization to select a good query plan.

• Deco [151] separates the user view and system view. The logical relations

are specified by a schema designer and queried by an end-user. Raw schema is

stored in the RDBMS and it is invisible to the schema designer and users. Deco

focuses on crowdsourcing missing values or new tuples based on the defined

fetch rules, e.g., Deco specifies resolution rules such as de-duplication and ma-

jority voting to resolve inconsistencies in the collected data. Deco also supports

other operators, such as Dependent Left Outer Join, Filter and Scan. In query

optimization, to find the best query plan with the minimum cost, it considers

both cost estimation and optimal query generation. For cost estimation, it pro-

poses an iterative approach to estimate the cost for a query plan. For optimal

query plan generation, it enumerates all possible query plans and selects the

best query plan with the least estimated cost.

2.7 Focus of the Thesis

As introduced in Chapter 1, the focus of the thesis is mainly on the qual-

ity control, which is one of the most fundamental techniques in designing the

crowdsourcing applications. Since workers may yield relatively low-quality an-

swers, in order to achieve high quality, it is important to tolerate errors and infer

high-quality results from noisy answers. We mainly focus on task assignment

CHAPTER 2. RELATED WORKS 35

(Chapters 3 and 4) and truth inference (Chapter 5) in the crowdsourcing frame-

work, and study how to combine them together in complex applications, i.e.,

image tagging (Chapter 6) and question answering (Chapter 7). The design of

crowdsourced operators and optimization can definitely benefit from the tech-

niques in task assignment and truth inference, and it will be an interesting and

open problem of how to design the applications by integrating the considera-

tion of quality, cost and latency in a unified approach, which we will study as a

future work.

36 CHAPTER 2. RELATED WORKS

37

Chapter 3

Quality-Aware Online Task

Assignment

3.1 Introduction

Crowdsourcing solutions have been proposed to solve problems that are

often considered to be hard for computers (e.g., entity resolution [192, 199] and

sentiment analysis [127]). Consider the entity resolution problem, where ob-

jects in a database referring to the same real-world entity are to be identified.

For instance, in a product review database, it is useful to collect all the users’

comments about a particular product, which may be named differently by var-

ious users (e.g., iPad Two and iPad 2). To perform this task, crowdsourcing tech-

niques have been developed to generate human understandable tasks (e.g., Are

iPad Two and iPad 2 the same or not?) for the database owner (or requester) [192].

These tasks, packed into Human Intelligent Tasks (HITs), are posted on a crowd-

sourcing platform (e.g., Amazon Mechanical Turk (AMT)). Internet users (or

workers) are then invited to answer these tasks, based on which the final result

is returned to the requester.

In AMT, every HIT contains a certain number (k) of tasks. Because a worker

38 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

may give an incorrect answer, a HIT is assigned to a number (z) of workers.

The result of each task is then derived based on voting strategies (e.g., Majority

Vote). Upon completion of a HIT, the requester may pay a certain amount of

money to the worker. A fundamental issue, which we call task assignment (in the

worker-based setting), is: Given a pool of n tasks, which of the k tasks should be

selected and put to the HIT for the coming worker? In AMT, this issue is usu-

ally addressed in an offline manner: the tasks assigned to all HITs were decided

before they are shown to the workers. As pointed out in [27, 127], the main

drawback of this approach is that the difficulty level of a task is not considered:

for an “easy” task, its final result can be determined even if the current num-

ber of answers received from workers is less than z, whereas a more difficult

or controversial task may require answers from more than z workers. Notice

that a requester may only have a limited amount of budget to pay the work-

ers. It is thus important to decide the task(s) to be included in a HIT, in order

to obtain the best answers under the limited budget. Recent solutions, such

as CDAS [127] and AskIt! [27], address this problem through online assignment

strategies – the HIT is generated dynamically when requested by a worker, i.e.,

the k tasks are chosen for the HIT “on the fly”. The statistical confidence of the

answers obtained so far for each task is tracked, and tasks whose answers are

the least confident are put to the HIT. Thus, the number of times each task is

asked can be different. These methods were shown to perform better than the

AMT’s approach.

However, existing online assignment strategies overlook an important fac-

tor – the applications that use the crowdsourced data. Depending on the appli-

cation semantics, the metric used to gauge the quality of crowdsourced data can

be different. In Twitter Sentiment Analysis, for instance, workers are invited to

give their sentiments (e.g., “positive”, “neutral” or “negative”) for each crawled

tweet [127]. The Accuracy metric, which is the fraction of returned tweets cor-

rectly classified, is often used to measure the quality of the sentiment labels [85,

92, 127, 161]. As for entity resolution [192, 199], which asks a worker to judge

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 39

whether a pair of objects is “equal” or “non-equal”, F-score [96,132,133,192,195]

is often adopted to measure the quality of the entity-resolution results. As our

experiments show, considering evaluation metrics in the task assignment pro-

cess can significantly improve the quality of the crowdsourced results.

Our solutions. In this chapter, we propose a novel online task assignment

framework, which takes application-driven evaluation metrics into account. We

investigate two popular evaluation metrics, i.e., Accuracy and F-score, that are

widely used by various crowdsourcing applications [85, 92, 127, 161, 192, 195].

Conceptually, our algorithm enumerates all sets of k tasks. For every set of k

tasks, our solution estimates the improvement in the quality of the answers, if

these tasks are really sent to the coming worker. The set of k tasks that maxi-

mizes the quality improvement will constitute the new HIT. To realize this, we

have to address two key issues:

• Lack of ground truth. Evaluation metrics, such as Accuracy and F-score, as-

sume that each task’s ground truth (or true answer) is known. However, during

the task assignment process, it may not be possible to know the ground truth of

a task. Thus, existing evaluation metrics are not readily used to solve the task

assignment problem. We represent the possible true answer of a task by the

distribution matrix, which captures the probability distributions of true answers.

We study how to populate this matrix with two models, namely Worker Prob-

ability (WP) [80, 100, 127, 211] and Confusion Matrix (CM) [19, 92, 200] that are

commonly used to describe the performance of workers. We further incorpo-

rate the distribution matrix into Accuracy and F-score, resulting correspondingly

in the proposed two functions: Accuracy∗ and F-score∗.

• Expensive evaluation. Finding the best solution for the task assignment prob-

lem can be extremely expensive. Given a pool of n tasks, there are (n
k) sets of

candidate tasks for a HIT. Moreover, due to the incorporation of the distribu-

tion matrix, measuring the quality of the distribution matrix under Accuracy∗

or F-score∗ can be expensive. We explore efficient algorithms for quality mea-

40 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

QASCA

App Manager

Web Server

Crowdsourcing Platforms (e.g., AMT)

Database

Task Assignment

Deploy Application Get Results

Crowdsourcing Applications by Requesters

Figure 3.1: The QASCA Architecture.

surement. We also propose two respective linear-time algorithms to find the

best set of tasks for assignment.

We have developed a system called QASCA. As shown in Figure 3.1,

QASCA is run on top of a crowdsourcing platform (e.g., AMT). The App Manager

stores the n tasks and other information (e.g., budget) needed by the strategies.

The Task Assignment runs the strategies and decides the k tasks to be included

in the HIT. The Web Server then sends the HIT to the workers. The workers’

answers are then stored in the Database through the Web Server, and the derived

results are sent back to the requester.

To summarize, we make the following contributions:

(1) We propose a novel task assignment framework by incorporating evalua-

tion metrics into assignment strategies, and formalize the online task assignment

problem under the proposed framework;

(2) We generalize the definition of evaluation metrics to be able to quantify the

result quality w.r.t a distribution matrix, and devise efficient algorithms to iden-

tify the optimal result of each task that can maximize the overall quality;

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 41

(3) We propose two respective linear online assignment algorithms that can ef-

ficiently select the best k tasks for a coming worker;

(4) We develop a system called QASCA (http://i.cs.hku.hk/~ydzheng2/

QASCA), which enables a popular crowdsourcing platform (i.e., AMT) to sup-

port our task assignment framework. We evaluate the performance of QASCA

on five real applications. Experimental results indicate that QASCA can achieve

much better (of more than 8% improvement) result quality compared with five

state-of-the-art systems.

The remainder of this chapter is organized as follows. Section 3.2 intro-

duces the architecture. Section 3.3 defines the task assignment problem. We de-

fine Accuracy∗ and F-score∗, and explain how to evaluate them in Section 3.4.

Efficient online assignment algorithms are devised in Section 3.5. Section 3.6

addresses how to compute distribution matrices. We present our experimental

results in Section 3.7. Section 3.8 discusses related works. Finally, we present

conclusions and future work in Section 3.9.

3.2 QASCA Architecture

QASCA contains four components, namely APP Manager, Web Server, Task

Assignment and Database component in all. To deploy an application, a re-

quester has to configure the three files in APP Manager. We first introduce the

four components, and then show how to deploy an entity resolution application

in QASCA.

APP Manager: To deploy n tasks in QASCA, the requester first needs to create

an application folder in APP Manager, which consists of three files: (1) Task File

is a JSON-format file which stores the set of n tasks and their possible labels;

(2) UI Template File is used to render k tasks as a user understandable HIT in

HTML templates; (3) Configuration File contains all required information about

the application, including the number of tasks in each HIT (k), the amount of

42 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

money paid for each HIT (b), the total budget (B), and the evaluation metric.

Web Server: Web Server processes the requests from workers in crowdsourcing

platform (AMT). If a worker requests a HIT, Web Server calls Task Assignment,

which dynamically generates a HIT and assigns it to the worker; if a worker

completes a HIT, Web Server updates the answer set D and parameters (includ-

ing prior and worker model) in Database.

Task Assignment: Task Assignment is the core component in QASCA. When a

worker requests a HIT through Web Server, based on the task model and the

worker model stored in Database, Task Assignment identifies k tasks for the

worker by considering the evaluation metric specified in APP Manager. Then

it dynamically creates a HIT consisting of the identified k tasks, and assigns

the HIT to the worker via Web Server. The online task assignment problem is

formally defined in Section 3.3.

Database: Database is the component that stores tables containing task and

worker model. When a worker requests a HIT through Web Server, tables are

queried by Task Assignment; when a worker completes a HIT, tables are up-

dated by Web Server. After all HITs are completed, Database returns the result

of each task based on the task model and the evaluation metric.

Suppose a requester wants to deploy an entity resolution application on

QASCA and the application has generated n = 1000 tasks where each task has

the labels L1 =“equal” and L2 =“non-equal”. The requester first creates an

application folder in the APP Manager component. In the created folder, the

requester (1) deploys the tasks as JSON-format in the tasks File, (2) specifies the

HTML template in the UI Template File, (3) indicates in the Configuration File

that each HIT contains k = 10 tasks and is paid b = $0.02, and the total invested

budget is B = $7, and the evaluation metric is set as F-score for “equal” with

α=0.5.

When a worker requests a HIT, Web Server acquires worker-id from AMT

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 43

and passes it to Task Assignment, which identifies k = 10 tasks based on the

specified evaluation metric (F-score for “equal” with α=0.5) in APP Manager,

and returns a HIT containing the identified tasks to the worker. When a worker

completes a HIT, Web Server updates the answer set and parameters.

The total number of HITs is denoted as m = B/b = 350. After obtaining the

answers of all m = 350 HITs, QASCA terminates and returns the derived result

for each task based on considering the task model (stored in Database) and the

evaluation metric (F-score for “equal” with α = 0.5).

3.3 The Task Assignment Problem

We first discuss the task model in Section 3.3.1, and then formally define

the task assignment problem in Section 3.3.2. Finally we explain the workflow

of QASCA in Section 3.3.3.

3.3.1 Task Model

Let S = {q1, q2, . . . , qn} denote the set of tasks provided by a requester

and each task has the same ` possible labels (or answers), denoted by

{L1, L2, . . . , L`}. For example, the two labels for all generated tasks in an en-

tity resolution application [195] are {L1=“equal”, L2=“non-equal”}. Let D =

{D1, D2, . . . , Dn} denote the answer set for all tasks. Each Di contains a set of

tuples where each tuple (w, j) denotes that task qi has been answered by worker

w with label Lj. For example, D2 = {(w1, 1), (w3, 2)} means that task q2 is an-

swered twice: worker w1 has answered task q2 with label L1 and worker w3 has

answered task q2 with label L2.

When worker w completes a HIT, for each task qi (1 ≤ i ≤ n), we can

compute the probability distribution of task qi’s true label. The probability

distributions of all tasks form the task model, called current distribution ma-

trix, denoted by Qc, which is an n × ` matrix. The i-th (1 ≤ i ≤ n) row

44 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

Qc
i = [Qc

i,1, Qc
i,2, . . . , Qc

i,`] represents the probability distribution for task qi’s

true label, and each cell Qc
i,j (1 ≤ i ≤ n, 1 ≤ j ≤ `) denotes the probability that

task qi’s true label is Lj. We will discuss how to compute Qc in Section 3.6.1.

Remarks: For ease of presentation, we assume that (1) the labels are pre-

defined, and are the same for all tasks; (2) each task’s ground truth is a single

label. These assumptions can be relaxed. First, if labels are not pre-defined, [179]

addresses how to enumerate possible labels for tasks. Second, if each task has

multiple true labels, we can follow [149] to decompose each task into ` filter

tasks, where each filter task is to decide whether the original task satisfies a cor-

responding label or not. To handle a domain with continuous values, we can

adopt the bucketing method [121], which discretizes the domain into different

buckets, where each bucket indicates a specific label.

3.3.2 Task Assignment

Note that a worker may request multiple HITs, so we keep track of the

history of previously assigned tasks. Let Sw denote the candidate set of tasks

for worker w, i.e., the set of tasks that have not been assigned to worker w (each

worker has her unique Sw). QASCA will not assign duplicated tasks to the same

worker. When worker w requests a HIT, it selects k tasks in Sw and assigns

them to her. To select tasks for worker w, QASCA first estimates the probability

distribution of each task qi’s (qi ∈ Sw) true label if worker w answers it. The

estimated probability distributions of all tasks in Sw form an n× ` matrix Qw,

called estimated distribution matrix for worker w. The i-th (qi ∈ Sw) row Qw
i =

[Qw
i,1, Qw

i,2, . . . , Qw
i,`] represents the estimated probability distribution for task

qi’s true label if it is answered by worker w. Each cell Qw
i,j (qi ∈ Sw, 1 ≤ j ≤ `)

denotes the estimated probability that task qi’s true label is Lj if it is answered

by worker w. Note that row i (or Qw
i) is empty when qi /∈ Sw. We will discuss

how to compute Qw in Section 3.6.3.

Let the vector X = [x1, x2, . . . , xn] denote an assignment of HIT, where each

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 45

element xi = 1 (0) indicates that the task qi will (not) be chosen to assign for the

coming worker. When worker w comes, based on Sw, we define X as a feasible

assignment if it satisfies (1) ∑n
i=1 xi = k, and (2) if xi = 1, then qi ∈ Sw. There

are k tasks in a HIT and we can only assign tasks in Sw to worker w. Thus the

number of feasible X is (|S
w|
k) ≤ (n

k).

Given Qc, Qw, and a feasible X, we construct a matrix QX called assignment

distribution matrix for X. The i-th row, QX
i , is the (estimated) probability distribu-

tion of task qi if worker w answers all the assigned tasks in X. We can construct

QX using Qc and Qw: for an unassigned task qi in X (or xi = 0), its distribution

(QX
i) remains to be Qc

i ; for an assigned task qi in X (or xi = 1), its distribution

(QX
i) is estimated to be Qw

i , thus

QX
i =

Qc
i if xi = 0,

Qw
i if xi = 1.

(3.1)

Let F(·) be an evaluation metric, which is used to evaluate the quality of

a distribution matrix. When worker w requests a HIT, there are (|S
w|
k) feasible

X, and the problem is to choose the optimal feasible X∗ that maximizes F(QX).

(Note that in the extreme case that |Sw| < k, we just have to assign the candi-

dates tasks Sw to worker w.) We formally define the (online) task assignment

problem in Definition 3.1.

Definition 3.1. When a worker w requests a HIT, given the current distribution ma-

trix (Qc), the estimated distribution matrix for the worker w (Qw), and the function

F(·), the problem of task assignment for the worker w is to find the optimal feasible

assignment vector X∗ such that X∗ = argmaxX F(QX).

3.3.3 The Workflow of QASCA

To deploy an application, a requester needs to set n tasks with ` labels and

she should also indicate the number of tasks in each HIT (k), the amount of

money paid for each HIT (b), the total invested budget (B) and the evaluation

46 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

cQ wQ
1 2 4 6{ , , , }wS q q q q

2k

4| |
6

2

wS

k

1XQ 6XQ

Current

Distribution

Matrix

Estimated

Distribution

Matrix

QASCA

(3) Six Possible

Assignments
(2) Compute

(5)

Assign a HIT

(B)
argmax ()i

i

X

X F Q

1 [1,1,0,0,0,0]X 6 [0,0,0,1,0,1]X

1 2 3 4 5 6{ , , , , , }D D D D D D D

Answer SetParameters

(C)

(1)

Request a HIT

Completion:

Request: (4)

(4)

(4)

0.8 0.2

0.6 0.4

0.25 0.75

0.5 0.5

0.9 0.1

0.3 0.7

0.923 0.077

0.818 0.182

0.75 0.25

0.125 0.875

0.8 0.2

0.6 0.4

0.25 0.75

0.75 0.25

0.9 0.1

0.125 0.875

0.923 0.077

0.818 0.182

0.25 0.75

0.5 0.5

0.9 0.1

0.3 0.7

(A)

Complete a

HIT

Worker w

(C)

Figure 3.2: The Workflow of QASCA.

metric. In [87, 93], the issues of setting appropriate values of k and b are dis-

cussed. The evaluation metric (e.g., Accuracy and F-score), which depends on

the application semantics, will be addressed in Section 3.4.

There are two events from workers that QASCA should process: the event

when a worker completes a HIT (called “HIT completion”) and the event when

a worker requests a HIT (called “HIT request”). Based on the workflow in Fig-

ure 3.2, we give an example (Example 1) to show how QASCA processes these

two events.

Example 1. The solid (red) lines and the dotted (blue) lines in Figure 3.2 represent how

QASCA processes a HIT completion event and a HIT request event, respectively:

(1) when a worker w completes a HIT (HIT completion process), QASCA does several

updates in the database: it first updates the answer set D 2 (step A), and then based on

the new D, it updates some parameters such as workers’ qualities (step B). Finally it

uses these new parameters to update Qc (step C);

(2) when a worker w requests a HIT (HIT request process), suppose S =

{q1, q2, q3, q4, q5, q6}, and each HIT contains k = 2 tasks. QASCA first extracts Qc

(step 1) and parameters from database to compute Qw for worker w (step 2). Assume

worker w has answered q3 and q5 previously, now the candidate set of tasks for her is

2Note that the answer set D is continuously updated. That is, in the HIT request process, the
current D is used to decide which tasks should be assigned; while in the HIT completion process,
QASCA updates D based on worker’s answers.

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 47

Sw = {q1, q2, q4, q6}. Since |Sw| = 4 and k = 2, there are (4
2) = 6 feasible assignments

for worker w (step 3). Consider the first feasible assignment X1 = [1, 1, 0, 0, 0, 0], which

assigns q1 and q2 to worker w. We construct QX1 by Equation 3.1, so QX1
i = Qw

i for

i = 1, 2 and QX1
i = Qc

i for i = 3, 4, 5, 6. Similarly, we can construct QX2 , QX3 , QX4 ,

QX5 , QX6 for other feasible assignments. Based on the chosen function F(·) (Accuracy

or F-score), assume that F(QXi) (1 ≤ i ≤ 6) is maximized on QX6 (step 4) and since

X6 = [0, 0, 0, 1, 0, 1], QASCA batches tasks {q4, q6} in a HIT and assigns it to worker

w (step 5).

To help readers better understand our chapter, we summarize notations in

Table 3.1. There are three challenges in Figure 3.2. Firstly, how can we define

F(·) for different evaluation metrics; secondly, given Qc, Qw and F(·), how can

we efficiently compute the optimal assignment in Definition 3.1 (step 4); thirdly,

how can we compute Qc when a HIT is completed (step C) and estimate Qw

for worker w when a HIT is requested (step 2). We respectively address these

challenges in the following three sections.

3.4 Evaluating Quality Metrics

In this section, we study the two popular evaluation metrics (Accuracy and

F-score) in Sections 3.4.1 and 3.4.2, respectively. For each evaluation metric, we

first introduce its original definition assuming the known ground truth, then we

study its variants by incorporating a distribution matrix Q. Finally we define

F(·) by discussing how to evaluate the quality of Q w.r.t. an evaluation metric.

We first clarify some notations. We denote the result vector by R =

[r1, r2, . . . , rn], where 1 ≤ ri ≤ ` and Lri is the returned label (or result) for qi. We

also denote the ground truth vector by T = [t1, t2, . . . , tn], where 1 ≤ ti ≤ ` and

Lti is the ground truth label for qi. The formal definition of function Accuracy or

F-score is F(T, R), which evaluates the quality of R based on known T. In task

assignment scenarios, the ground truth vector T is unknown, but we can obtain

48 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

Table 3.1: Notations Used in Chapter 3.
Notation Description

Task Model
qi The i-th task (1 ≤ i ≤ n)
Lj The j-th label (1 ≤ j ≤ `)
ti The index of true label for qi (1 ≤ i ≤ n), 1 ≤ ti ≤ `
Di Answer set for task qi (1 ≤ i ≤ n)
S tasks set: S = {q1, q2, . . . , qn}
D Answer set for all tasks: D = {D1, D2, . . . , Dn}
Qc Current distribution matrix (size n× ` matrix)

Task Assignment
k The number of tasks per HIT

Sw Candidate tasks set for worker w
Qw Estimated distribution matrix for worker w (size n× ` matrix)
X Assignment vector (1× n), where each element xi = {0, 1}

QX Assignment distribution matrix for X (size n× ` matrix)
R Result vector (1× n), where each element 1 ≤ ri ≤ `
aw

i The index of answered label by worker w for qi

Parameters
mw Worker Probability (WP) for worker w
Mw Confusion Matrix (CM) for worker w (size `× ` matrix)
pj Prior probability for label Lj (1 ≤ j ≤ `)

a distribution matrix Q based on the crowd’s answers. Thus, we generalize the

evaluation metrics to be able to quantify the quality of result vector R (called

“result quality”) w.r.t the distribution matrix Q, i.e., F∗(Q, R). Since given a dis-

tribution matrix Q, the requesters want the best results R∗ = argmaxR F∗(Q, R)

to be returned. So in order to evaluate the quality of Q, we consider the choice

of R∗ and use the best quality that Q can reach to evaluate the quality of Q, i.e.,

F(Q) = maxR F∗(Q, R) = F∗(Q, R∗).

3.4.1 Accuracy

Accuracy is an evaluation metric used by many crowdsourcing applica-

tions [44, 91, 92, 127, 161]. It aims to measure the overall classification quality

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 49

among all labels. For example, in a sentiment analysis application, if a requester

focuses on the overall quality among all three labels (i.e., “positive”, “neutral”

and “negative”), Accuracy can be used as the evaluation metric. It is defined

as the fraction of returned labels that are correct. Let 1{·} denote an indica-

tor function which returns 1 if its argument is true; 0, otherwise. For example,

1{5=2} = 0 and 1{5=5} = 1. Then we derive

Accuracy(T, R) =
∑n

i=1 1{ti=ri}
n

. (3.2)

Consider an example where n = 4, ` = 3, T = [2, 1, 3, 2] and R = [2, 1, 3, 1].

Since it correctly identifies the labels of the 1st, 2nd, and 3rd tasks, we have

Accuracy(T, R) = 3
4 = 0.75.

Accuracy*

As shown above, the definition of Accuracy(T, R) requires to know the

ground truth T. In practice, however, we only have the distribution matrix Q,

which records the probability distribution of each task’s true label. Therefore,

we use the expected accuracy to measure the result quality. Since Qi (the i-th

row of Q) represents the probability distribution of task qi’s true label, then we

have P(ti = j) = Qi,j and E[1{ti=j}] = P(ti = j) · 1 + P(ti 6= j) · 0 = Qi,j. Thus

Accuracy∗(Q, R) is defined as

Accuracy∗(Q, R) = E[Accuracy(T, R)] =
∑n

i=1 Qi,ri

n
. (3.3)

Note that the assumptions made here are that the distribution matrix Q

can be known in advance. In general, many existing truth inference works

(see [221], or Chapter 5) have focused on computing the matrix Q. Basically

it leverages the inherent relationships between each worker’s quality and each

task’s truth, and iteratively derives the two sets of parameters. Then for each

task, it considers the answers given by workers and finally derives such Q.

50 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

Specifically, Accuracy∗(Q, R) represents the expected number of correctly an-

swered tasks out of all tasks. For example, consider the distribution matrix Qc

in Figure 3.2. Given a result vector of R = [1, 2, 2, 1, 1, 1], its accuracy (w.r.t Qc)

is defined as Accuracy∗(Qc, R) = 0.8+0.4+0.75+0.5+0.9+0.3
6 = 60.83%.

Identify the Optimal Result for Accuracy*

In order to measure the quality of a distribution matrix Q, we need to de-

termine the optimal result vector R∗ that maximizes Accuracy∗(Q, R), i.e., R∗ =

argmaxR Accuracy∗(Q, R). To compute R∗, an intuitive idea is to return the

most likely label for each task, i.e., R∗ = [r∗1 , r∗2 , . . . , r∗n] where r∗i = argmaxj Qi,j.

We next prove that the idea is correct in Theorem 3.1.

Theorem 3.1. For Accuracy∗, the optimal result r∗i (1 ≤ i ≤ n) of a task qi is the label

with the highest probability, i.e., r∗i = argmaxj Qi,j.

Proof. We prove the theorem by proof of contradiction. Suppose the theorem

does not hold. Then in the optimal result vector R∗ = [r∗1 , r∗2 , . . . , r∗n], there exists

an index t (1 ≤ t ≤ n), such that r∗t 6= argmaxj Qt,j. So we can construct a result

vector R′ = [r′1, r′2, . . . , r′n] where r′t = argmaxj Qt,j and r′i = r∗i for i 6= t. Then

we have Accuracy∗(Q, R′)−Accuracy∗(Q, R∗) = (Qt,r′t − Qt,r∗t)/n > 0, which

contradicts that R∗ is the optimal result vector. Thus the theorem is correct.

Based on Theorem 3.1, we know that for Accuracy∗, the optimal result of

a task qi only depends on its own distribution Qi. Take Qc in Figure 3.2 as an

example. Consider the first task. Since Qc
1,1 (0.8) > Qc

1,2 (0.2), the optimal result

for q1 is r∗1 = 1. Similarly we can derive the optimal result vector R∗ for all tasks,

i.e., R∗ = [1, 1, 2, 1, 1, 2] (or [1, 1, 2, 2, 1, 2] as Qc
4,1 = Qc

4,2). Thus the quality of Qc

for the metric Accuracy, is measured as F(Qc) = Accuracy∗(Qc, R∗) = 70.83%

For Accuracy, the definition (Equation 5.3) and the optimal result selection

(Theorem 3.1) are not very difficult. But for F-score, these problems become

more challenging.

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 51

3.4.2 F-score

In applications such as text classification [42], sentiment analysis [132,133],

entity resolution [192, 195, 199] and fact finding [155, 215], a requester may only

be interested in a particular label (which we call target label). In this situation, a

task can be simplified as a two-label task (i.e., ` = 2), where the two labels are

the “target label” and “non-target label”, denoted by L1 and L2, respectively.

For example, in an sentiment analysis application, if the requester wants to pick

out the “positive” sentiment tweets with a high confidence, then each task is to

identify whether a sentence’s sentiment is L1=“positive” or L2=“non-positive”.

The F-score, introduced in [181], can be used to capture the quality of an-

swers to the two-label tasks above. This measure (F-score) is formally defined

as the weighted harmonic mean of two commonly known metrics, namely Pre-

cision and Recall:

F-score =
1

α · 1
Precision + (1− α) · 1

Recall

, (3.4)

where

(1) Precision is the faction of tasks with returned results L1 that are actually

correct, i.e.,

Precision(T, R) =
∑n

i=1 1{ti=1} · 1{ri=1}

∑n
i=1 1{ri=1}

; (3.5)

(2) Recall is the fraction of tasks with ground truth L1 that are actually returned

with results L1, i.e.,

Recall(T, R) =
∑n

i=1 1{ti=1} · 1{ri=1}

∑n
i=1 1{ti=1}

; (3.6)

(3) α ∈ (0, 1) is a parameter that controls the degree of emphasis: α ∈ (1
2 , 1)

emphasizes Precision; α ∈ (0, 1
2) emphasizes Recall; and we call the balanced F-

score if α = 1
2 .

52 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

Note that besides F-score, there are some other combinations of Precision

and Recall, e.g., the average (Precision + Recall)/2 and the geometric mean
√

Precision · Recall. Due to the widespread use of F-score, we only consider opti-

mizing F-score in this chapter, and an interesting future work might be how the

techniques can be applied to other combinations.

By plugging Equations 3.5 and 3.6 into Equation 3.4, we obtain:

F-score(T, R, α) =
∑n

i=1 1{ti=1} · 1{ri=1}

∑n
i=1[α · 1{ri=1} + (1− α) · 1{ti=1}]

. (3.7)

For the parameter α, if a requester wants to select “positive” sentiment sen-

tences with a high confidence, she can set α to a large value (e.g., 0.75) which

emphasizes Precision more. On the other hand, if a company manager wants

to collect as many “positive” comments for their products as possible, she can

give more attention to Recall by setting α to a lower value (e.g., 0.25).

Challenges

As the numerator and denominator of F-score(T, R, α) both have the ran-

dom variable 1{ti=1}, its expectation cannot be computed as easily as for Accu-

racy (Equation 5.3), so we resort to another way of computing its expectation.

We denote τ as the set of all possible ground truth vectors, i.e., τ = {1, 2}n and

|τ| = 2n. Given Q, the probability that T′ = [t′1, t′2, . . . , t′n] ∈ τ is the ground

truth vector is ∏n
i=1 Qi,t′i

. Then, we have

E[F-score(T, R, α)] = ∑
T′∈τ

F-score(T′, R, α) ·
n

∏
i=1

Qi,t′i
. (3.8)

There are two challenges related to this equation:

One is how to efficiently compute or estimate Equation 3.8. It is compu-

tationally expensive to enumerate all 2n possible T′. But given α and R, for

different T′ ∈ τ, the numerator and denominator of F-score(T′, R, α) can only

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 53

take at most n + 1 possible values respectively, thus F-score(T′, R, α) can only

have at most (n + 1)2 possible values. Based on this observation, for a given Q

and α, Equation 3.8 can be accurately calculated in O(n3) time [95]. Neverthe-

less, this complexity is still very high to a task assignment system as it is a key

step in task assignment. Thus it is better to find an accurate approximation that

is efficient to compute.

Another challenge is that if we directly apply Equation 3.8 to derive the

optimal result for each task, we observe two interesting facts that are different

from Accuracy:

Observation 1: Returning the label with the highest probability in each task

may not be optimal (even for α = 0.5);

Observation 2: Deriving the optimal result of a task qi does not only depend

on the task’s distribution (or Qi) itself.

In order to verify these two observations, we next give two counter-

examples in Example 2.

Example 2. Consider α = 0.5 and Q =

0.35 0.65

0.55 0.45

. If we return the label

with the highest probability for each task, then we obtain a result vector R̃ = [2, 1]

and the corresponding E[F-score(T, R̃, α)] = 1
0.5·1+0.5·2 · 0.35 · 0.55 + 0 · 0.35 ·

0.45 + 1
0.5·1+0.5·1 · 0.65 · 0.55 + 0 · 0.65 · 0.45 = 48.58% (Equation 3.8). However,

by enumerating all possible R ∈ {1, 2}2, we can derive the optimal R∗ = [1, 1] and

E[F-score(T, R∗, α)] = 53.58%. This example verifies our first observation.

Consider α̂ = 0.5 and Q̂ =

0.35 0.65

0.9 0.1

. Using the same method as above, we

can obtain the optimal R̂∗ = [2, 1]. Compared with the above example, we can see that

for the same α = α̂ = 0.5 in F-score, even if Q1 and Q̂1 are the same (i.e., [0.35, 0.65]),

the computed r∗1 = 1 and r̂∗1 = 2 are different. This example shows that the optimal

result for each task is not only dependent on the task’s distribution itself.

To address the above two challenges, we first give an approximation for

54 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

E[F-score(T, R, α)] in Section 3.4.2 and then discuss how to compute R∗ for the

approximated function in Section 3.4.2.

F-score*

Following Equation 3.7, we approximate E[F-score(T, R, α)] as
E[∑n

i=1 1{ti=1}·1{ri=1}]

E[∑n
i=1 [α·1{ri=1}+(1−α)·1{ti=1}]]

to boost efficiency, which is the ratio of the expec-

tation of numerator and denominator of F-score(T, R, α). By plugging Q inside,

we can formally define F-score∗(Q, R, α) as:

F-score∗(Q, R, α) =
∑n

i=1 Qi,1 · 1{ri=1}

∑n
i=1[α · 1{ri=1} + (1− α) ·Qi,1]

. (3.9)

For example, consider the values of α̂, Q̂ and R̂∗ in Example 2. Based on Equa-

tions 3.8 and 5.4, we can obtain E[F-score(T, R̂∗, α̂)] = 79.5% and F-score∗(Q̂, R̂∗, α̂) =

0.9
0.5·1+0.5·(0.35+0.9) = 80%, respectively. The error in the example is 0.5%.

Approximation Error. Let A and B denote two random variables. The same ap-

proximation (E
[A

B

]
≈ E[A]

E[B]) has also been used by other works [34,114,146,163]

for efficiency’s sake. Furthermore, [163] gives a general formula by expanding

Taylor series: E
[A

B

]
= E[A]

E[B] + ∑∞
v=1 φv, where φv = (−1)v · E[A]·<vB>+<A,vB>

(E[B])v+1 ,

<v B >= E[(B−E[B])v], and < A,v B >= E[(A−E[A]) · (B−E[B])v]. The

standard approximation formula (derived by delta method) used in [34, 146] is

E
[A

B

]
= E[A]

E[B] +O(n
−1) for n → ∞. By setting A and B as the numerator and

denominator of F-score(T, R, α), we can generally derive E[F-score(T, R, α)] =

F-score∗(Q, R, α) + O(n−1). We also verify this in experiments (Section 3.7.1)

and show that the error is small (≤ 0.01%) when n ≥ 103, which means that our

approximation is reasonable.

Identify the Optimal Result for F-score*

Unlike Accuracy∗, to identify the optimal result for F-score∗, the method

that chooses the most possible label of each task is not correct anymore. How-

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 55

ever, the intuition that it is preferable to return a label with a large probability

value may still hold. Based on this idea, we conjecture that there exists a thresh-

old w.r.t each task that can determine whether a target label should be returned

or not. That is, a target label should be returned only when its probability is

not lower than the threshold; otherwise the non-target label is returned. More

formally, let θi be the threshold w.r.t a task qi. If Qi,1 ≥ θi, we return the tar-

get label (i.e., r∗i = 1); otherwise, the non-target label is returned (i.e., r∗i = 2).

We prove the correctness of the conjecture in Theorem 3.2. An interesting ob-

servation from the theorem is that every task has the same threshold, which is

equal to λ∗ · α, where λ∗ represents the optimal value for F-score∗ (or the quality

evaluation of Q), i.e., λ∗ = maxR F-score∗(Q, R, α).

Theorem 3.2. Given Q and α, for F-score∗, the optimal result r∗i (1 ≤ i ≤ n) of a

task qi can be derived by comparing Qi,1 with the threshold θ = λ∗ · α, i.e., r∗i = 1 if

Qi,1 ≥ θ and r∗i = 2 if Qi,1 < θ.

Proof. In the proof for Theorem 2, we assume that λ∗ is known, and we try to

exploit how the optimal result vector R∗ can be constructed with the known λ∗.

As λ∗ = maxR F-score∗(Q, R, α), which means that for any R ∈ {1, 2}n, the

inequality λ∗ ≥ F-score∗(Q, R, α) holds, i.e., we have

λ∗ ≥
∑n

i=1 Qi,1 · 1{ri=1}
α ·∑n

i=1 1{ri=1} + (1− α) ·∑n
i=1 Qi,1

,

then we can further derive

∑n
i=1(Qi,1 − λ∗ · α) · 1{ri=1} ≤ λ∗ · (1− α) ·∑n

i=1 Qi,1. (3.10)

From another perspective, the optimal result vector R∗ satisfies the following

formula: λ∗ = F-score∗(Q, R∗, α), thus similarly we can derive

∑n
i=1(Qi,1 − λ∗ · α) · 1{r∗i =1} = λ∗ · (1− α) ·∑n

i=1 Qi,1. (3.11)

56 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

As λ∗, Q, and α are known, for ease of representation let us denote a fixed

constant A and a function h(R) as follows A = λ∗ · (1− α) ·∑n
i=1 Qi,1,

h(R) = ∑n
i=1 (Qi,1 − λ∗ · α) · 1{ri=1}.

Then Equation 3.10 and 3.11 can be represented as: (1) for any R ∈ {1, 2}2, h(R) ≤
A; and (2) the optimal R∗ satisfies h(R∗) = A. Next we prove that if we can de-

rive R′ = argmaxR { h(R) }, then R′ = [r′1, r′2, . . . , r′n] is the optimal result vector

(i.e., R′ = R∗). From Equation 3.10, since R′ ∈ {1, 2}2, we can derive h(R′) ≤ A.

From R′ = argmaxR { h(R) }, we know that maxR{ h(R) } = h(R′) and

from Equation 3.11, we know that maxR{ h(R) } ≥ h(R∗) = A. So we have

h(R′) ≥ A. As h(R′) ≤ A, we have h(R′) = A, or ∑n
i=1(Qi,1 − λ∗ · α) · 1{r′i=1} =

λ∗ · (1− α) ·∑n
i=1 Qi,1, and finally we can derive λ∗ from the above Equation:

λ∗ =
∑n

i=1 Qi,1 · 1{r′i=1}

α ·∑n
i=1 1{r′i=1} + (1− α) ·∑n

i=1 Qi,1
.

As λ∗ = F-score∗(Q, R′, α), i.e., R′ derives the optimal λ∗, we know R′ =

R∗. Then R∗ = argmaxR{ h(R) }, i.e., R∗ = argmaxR
{

∑n
i=1(Qi,1 − λ∗ · α) ·

1{ri=1}
}

. In order to maximize h(R), we can set 1{ri=1} = 1 (or ri = 1) if Qi,1 ≥
λ∗ · α and 1{ri=1} = 0 (or ri = 2) if Qi,1 < λ∗ · α. Then we get

r∗i =

 1 if Qi,1 ≥ λ∗ · α,

2 if Qi,2 < λ∗ · α.

Thus we have proved that there exists a threshold θ = λ∗ · α, such that

R∗ = [r∗1 , r∗2 , . . . , r∗n] can be constructed as r∗i = 1 if Qi,1 ≥ λ∗ · α and r∗i = 2 if

otherwise.

As λ∗ = maxR F-score∗(Q, R, α), Theorem 3.2 shows that for F-score∗, a

task’s optimal result is related to the optimal value for F-score∗ w.r.t. Q, which

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 57

takes all the tasks’ distributions into consideration. This explains that why the

claim for Accuracy∗ (Theorem 3.1), i.e., “a task’s optimal result is only depen-

dent on its own distribution” does not hold. Next we focus on the problem of

how to efficiently derive λ∗.

We first show that this problem can be reduced to a 0-1 fractional program-

ming (FP) problem, and then present an iterative algorithm to identify the opti-

mal value (λ∗). Let B = [b1, b2, . . . , bn], D = [d1, d2, . . . , dn] denote two coefficient

vectors, and β, γ denote two scalars. The 0-1 FP problem is defined as:

max f (z) = ∑n
i=1(zi · bi) + β

∑n
i=1(zi · di) + γ

s.t. z ∈ Ω ⊆ {0, 1}n

Comparing F-score∗ (Equation 5.4) with f (z), we find that F-score∗ can ac-

tually be rewritten in the form of f (z) as follows: zi = 1{ri=1}, bi = Qi,1, di = α for 1 ≤ i ≤ n;

β = 0, γ = ∑n
i=1(1− α) ·Qi,1, Ω = {0, 1}n.

(3.12)

Thus the problem of computing λ∗ can be reduced to a 0-1 FP problem. The 0-1

FP problem can be efficiently solved based on the Dinkelbach framework [52].

We apply it to our problem, which consists of the following three steps:

Initialization: It first constructs a new function g(z, λ) = ∑n
i=1 (bi −λ · di) · zi.

Then it will iteratively update λ.

In our case, bi, di and zi (1 ≤ i ≤ n) can be represented following Equa-

tion 3.12 and g(z, λ) = ∑n
i=1(Qi,1 − λ · α) · 1{ri=1}.

Iteration: Let λt denote the λ for the t-th iteration. For the first iteration, the

algorithm initializes λ as a constant value λinit (for example, 0): λ1 = λinit, and

then computes z′ = argmaxz g(z, λ1). By plugging the newly computed z′ into

f (z), the algorithm updates λ1 to λ2 = f (z′). Then it repeats the above iteration

with the updated λ (i.e., λ2).

58 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

In our case, in the first iteration, with initial λ1 = λinit, we have to com-

pute R′ = argmaxR ∑n
i=1(Qi,1 − λ1 · α) · 1{ri=1}, and R′ = [r′1, r′2, . . . , r′n] can be

derived by setting

1{r′i=1} =

1 (i.e., r′i = 1) if Qi,1 ≥ λ1 · α,

0 (i.e., r′i = 2) if Qi,1 < λ1 · α.

Then λ1 is updated as λ2 = F-score∗(Q, R′, α), and we repeat the above iteration

with the updated λ2.

Termination: The algorithm terminates at the c-th iteration when λ converges (or

it is unchanged), i.e., λc+1 = λc, and it returns λc+1 which is computed for the

c-th iteration.

The Dinkelbach framework guarantees that the iterative process will finally

converge to the optimal objective value [52]. Thus our algorithm can return

the optimal value for F-score∗, i.e., λ∗ = λc+1. The detailed algorithm is in

Algorithm 1. For a given Q, In order to derive the optimal λ∗ such that λ∗ =

maxR F-score∗(Q, R, α), following the discussions in Section 3.4.2, we design

Algorithm 1. It iteratively updates λ until convergence. Let λt denote the λ for

the t-th iteration, so initially λ1 = λinit = 0. In the t-th iteration (λt is known),

it first constructs a new result vector R′ using the known λt (lines 5-7) and then

update λt to λt+1 = F-score∗(Q, R′, α) (line 8) for the next iteration. The way to

construct each r′i (1 ≤ i ≤ n) in R′ is based on comparing Qi,1 with the threshold

λt · α, i.e., r′i = 1 if Qi,1 ≥ λt · α and ri = 2 if otherwise. Finally it decides

whether it converges (i.e., λt+1 = λt) or not (lines 9-12). We next run the two

counter-examples demonstrated in Example 2, and analyze the time complexity

in the end.

Example 3. Consider α̂ and Q̂ in Example 2. In the 1st iteration, suppose λ1 =

λinit = 0. As Q̂1,1 and Q̂2,1 are both ≥ λ1 · α̂ = 0, then R′ = [1, 1] and λ1 is

updated to λ2 = F-score(Q̂, R′, α̂) = 0.35+0.9
0.5·2+0.5·(0.35+0.9) = 0.77. As λ2 6= λ1, we

continue. In the 2nd iteration, by comparing Q̂1,1 and Q̂2,1 with λ2 · α̂ = 0.385, we can

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 59

Algorithm 1 Measure the Quality of Matrix Q for F-score (Chapter 3).
Input: Q, α
Output: λ

1: λ = 0 ; // initialized as 0 (λinit = 0)
2: R′ = [] ;
3: while True do
4: λpre = λ; // record λ for this iteration
5: // construct new R′ = [r′1, r′2 . . . r′n]
6: for i = 1 to n do
7: if Qi,1 ≥ λ · α then r′i = 1 else r′i = 2
8: end for
9: λ =

∑n
i=1 Qi,1·1{r′i=1}

∑n
i=1[α·1{r′i=1}+(1−α)·Qi,1]

; // F-score∗(Q, R′, α)

10: if λpre == λ then
11: break
12: else
13: λpre = λ
14: end if
15: end while
16: return λ

construct R′ = [2, 1], and λ3 = F-score(Q̂, R′, α̂) = 0.9
0.5·1+0.5·(0.35+0.9) = 0.8 6= λ2.

In the 3rd iteration, as the updated λ3 · α̂ = 0.4, we can construct R′ = [2, 1]. Since

λ4 = λ3 = 0.8, it converges and λ̂∗ = 0.8 is returned. Following Theorem 3.2, we

can obtain the threshold θ̂ = λ̂∗ · α̂ = 0.4. Since Q̂1,1 < θ and Q̂2,1 ≥ θ, we have

R̂∗ = [2, 1].

If we consider α and Q in Example 2, then similarly we derive λ∗ = 0.62, θ =

λ∗ · α = 0.31, and R∗ = [1, 1]. The above two examples show that the approxima-

tion function F-score∗(·) also conforms to the two observations verified in Example 2.

Moreover, F-score∗(·) gives us an intuitive explanation of why two observations occur:

in the two examples, the optimal values of F-score∗ (λ∗ and λ̂∗) affect the individual

threshold (θ and θ̂), and thus affecting the optimal result vectors (especially r∗1 and r̂∗1).

Time Complexity. As each iteration requires O(n) time and there are c itera-

tions in total, the time complexity is O(c · n). To evaluate the time complexity

in practice, we conduct extensive simulated experiments by randomly gener-

60 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

ating Q and α ∈ [0, 1], which shows that the time complexity of the algorithm

linearly increases w.r.t. n. It converges very fast, and c ≤ 15 when n = 2000

(Section 3.7.1).

3.5 Online Assignment Algorithms

Recall Definition 3.1, the quality of a given distribution matrix Q is mea-

sured as its maximal quality (or quality w.r.t R∗), i.e., F(Q) = maxR F∗(Q, R) =

F∗(Q, R∗), where F can be Accuracy or F-score. To address the task assignment

problem, one simple solution is to enumerate all feasible assignment vectors.

For each one (X), QX can be constructed via Equation 3.1, and we compute the

optimal result vector for QX, denoted as RX = argmaxR F∗(QX, R). Finally

X∗ = argmaxX F(QX, RX).

Obviously, this simple method is very expensive. To avoid enumerating

(|S
w|
k) feasible assignments, we propose two efficient algorithms: a Top-k Benefit

Algorithm for Accuracy∗ (Section 3.5.1) and an Online Assignment Algorithm

for F-score∗ (Section 3.5.2).

3.5.1 Accuracy*: Top-K Benefit Algorithm

Given Qc and Qw, let Rc = [rc
1, rc

2, . . . , rc
n] and Rw = [rw

1 , rw
2 , . . . , rw

n] denote

their respective optimal result vectors, i.e., rc
i = argmaxj Qc

i,j for 1 ≤ i ≤ n

and rw
i = argmaxj Qw

i,j for qi ∈ Sw. As shown in Theorem 3.1, the choice of

respective optimal result rc
i (rw

i) only depends on Qc
i (Qw

i). Therefore, based on

the definition of QX (Equation 3.1), the optimal result vector for QX, denoted by

RX = [rX
1 , rX

2 , . . . , rX
n], can be represented using Rc and Rw as follows:

rX
i =

rc
i if xi = 0,

rw
i if xi = 1.

(3.13)

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 61

According to Definition 3.1, we aim to find the optimal feasible assignment

X such that Accuracy∗(QX, RX) = ∑n
i=1 Qi,rX

i
/n = ∑n

i=1[(Qi,rc
i
/n) · 1{xi=0} +

(Qi,rw
i

/n) · 1{xi=1}] is maximized. We can further derive Accuracy∗(QX, RX) =

n

∑
i=1

Qc
i,rc

i

n
+

n

∑
i=1

Qw
i,rw

i
−Qc

i,rc
i

n
· 1{xi=1}. (3.14)

As for each X, the value ∑n
i=1 Qc

i,rc
i
/n is fixed. Then for each task qi, we can

define the benefit of assigning it to worker w as Benefit(qi) = Qw
i,rw

i
−Qc

i,rc
i
, which

indicates that the function Accuracy∗ will be increased by Benefit(qi)/n if qi is

assigned to worker w. Therefore, the optimal assignment consists of k tasks with

the largest benefits, and selecting them needsO(|Sw|) = O(n) time3. Example 4

illustrates how to apply the Top-k Benefit Algorithm to assign tasks in Figure 3.2

when the function is set as Accuracy∗.

Example 4. Consider Qc and Qw in Figure 3.2. We can obtain Rc = [1, 1, 2, 1, 1, 2]

(or [1, 1, 2, 2, 1, 2]) and Rw = [1, 1, 0, 1, 0, 2].4 For each qi ∈ Sw, we compute its benefit

as follows: Benefit(q1) = Qw
1,rw

1
− Qc

1,rc
1
= 0.123, Benefit(q2) = 0.212, Benefit(q4) =

0.25 and Benefit(q6) = 0.175. So q2 and q4 which have the highest benefits will be

assigned to worker w.

3.5.2 F-score*: Online Assignment Algorithm

Compared with Accuracy∗, the online assignment for F-score∗ is more chal-

lenging. The main reason is that as shown in Section 3.4.2, based on F-score∗,

the optimal result for each task is not only dependent on its own distribution.

Given a feasible X (QX can be constructed), deriving the optimal result vector

RX for QX is not as straightforward as Equation 3.13 for Accuracy∗.

Next we show how to efficiently solve the task assignment problem for

3The problem that finds the top k elements in an array can be solved linearly using the PICK
algorithm [26].

4Note that for qi /∈ Sw, Qw
i does not need to be computed, so we set rw

i = 0 for qi /∈ Sw and it
will never be used.

62 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

F-score∗. Recall that X∗ denotes the optimal assignment and let δ∗ denote the

optimal objective value, i.e.,

δ∗ = max
R

F-score∗(QX∗ , R, α). (3.15)

The basic idea of our solution is to first initialize δinit ≤ δ∗ (say δinit = 0), and

then iteratively update the initial δinit to δ∗ until convergence. Since δ∗ is un-

known, the main problem is how to ensure that δinit is always increasing until it

reaches δ∗. More formally, let δt denote the δ at the t-th iteration. Given δt, the

updated δt+1 should satisfy the following two properties:

Property 1: if δt < δ∗, then the updated δt+1 should satisfy δt < δt+1 ≤ δ∗;

Property 2: if δt = δ∗, then the updated δt+1 should satisfy δt = δt+1 = δ∗.

Intuitively, Property 1 guarantees that starting from δinit < δ∗, δinit will

be iteratively increased until δ∗. Property 2 guarantees that at convergence

(δt = δt+1), we can get δt+1 = δ∗. There are two challenges in solving the

problem:

(1) Given δt, how can we construct δt+1 such that the above two properties hold?

(2) The update should be solved efficiently to satisfy the performance require-

ment for task assignment.

To address the first challenge, we present our designed update in Defini-

tion 3.2 as follows:

Definition 3.2 (Update). Given δt, Qc, Qw, α, and Sw, the update from δt to δt+1 is

defined as

δt+1 = max
X

F-score∗(QX, R̂X, α), (3.16)

where for each feasible X (QX can be constructed via Equation 3.1), R̂X =

[r̂X
1 , r̂X

2 , . . . , r̂X
n] is constructed based on δt, i.e.,

r̂X
i =

 1 if QX
i,1 ≥ δt · α,

2 if QX
i,1 < δt · α.

(3.17)

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 63

To help understand the meaning of δt+1 in Definition 3.2, we will present

a brute-force method to obtain δt+1. This method enumerates all possible feasi-

ble assignment vectors. For each feasible X, as QX and R̂X can be constructed

following Equation 3.1 and 3.17 respectively, then F-score∗(QX, R̂X, α) can be

computed. By comparing the computed values for all assignment vectors, we

can obtain the maximum value, i.e., δt+1. Theorem 3.3 formally proves that the

updated δt+1 following Definition 3.2 satisfies the two properties.

Theorem 3.3. The defined δt+1 (in Definition 3.2) satisfies Property 1 and Property 2.

Proof. As mentioned before, in the definition of computing δt+1 (Definition 3.2),

the construction of RX (Equation 3.17) is similar to the construction of R′ in

choosing the optimal result vector for a given Q (Algorithm 1). Thus the basic

idea of the proof is to make a comparison with Algorithm 1.

Before making the comparison, we present some theoretical results proved

in [52] for the Dinkelbach framework (which applies to Algorithm 1). It has

proved that starting from the initial λinit ≤ λ∗, the λinit will be iteratively in-

creased to λ∗ until convergence. It means that the update from λt to λt+1 in

Algorithm 1 also conforms to our two properties, i.e., (1) if λt < λ∗, then

λt < λt+1 ≤ λ∗ and (2) if λt = λ∗, then λt = λt+1 = λ∗.

Recall that δ∗ and X∗ respectively denote the optimal value and the optimal

assignment vector, and we can derive δ∗ = maxR F-score∗(QX∗ , R, α). Thus, if

Algorithm 1 takes QX∗ and α as the input, then λ∗ = maxR F-score∗(QX∗ , R, α),

which is exactly δ∗, i.e., λ∗ = δ∗.

The comparison is conducted based on comparing our online assignment

algorithm with Algorithm 1, which takes QX∗ and α as the input. As derived

above, the optimal value for both algorithms are the same (i.e., δ∗).

To prove Property 1, suppose both algorithms start with δt < δ∗, and they

update their respective values (denoted as δt+1 and λt+1 respectively) for the

next iteration as follows

64 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

 δt+1 = maxX F-score∗(QX, R̂X, α),

λt+1 = F-score∗(QX∗ , R′, α).
(3.18)

Note that for a feasible X, R̂X is constructed by comparing each QX
i,1

(1 ≤ i ≤ n) with the threshold δt · α. And R′ is similarly constructed by com-

paring each QX∗
i,1 (1 ≤ i ≤ n) with the same threshold δt · α. As X∗ is also a

feasible assignment, we have (QX∗ , R′) ∈ {(QX, R̂X) | X is feasible }. Then by

considering Equation 3.18, we derive δt+1 ≥ λt+1. As mentioned above, since

δt < δ∗, the properties in [52] guarantee that λt+1 > δt, then we derive δt+1 > δt.

As δ∗ is the optimal objective value, we can finally derive δt < δt+1 ≤ δ∗, which

proves Property 1.

To prove Property 2, we apply the same comparison. Suppose both algo-

rithms start with δt = δ∗, then they are updated by Equation 3.18. Similarly

we have δt+1 ≥ λt+1. As δt = δ∗, following the properties in [52], we have

λt+1 = δt = δ∗. Since δt+1 ≤ δ∗, we derive δt = δt+1 = δ∗, which proves

Property 2.

To address the second challenge above, as shown in Theorem 3.4, we find

that this problem (computing δt+1 in Definition 3.2) can actually be reduced to a

0-1 FP problem and efficiently solved by leveraging the Dinkelbach framework

(similar to Section 3.4.2).

Theorem 3.4. The problem of computing δt+1 (Definition 3.2) can be reduced to a 0-1

FP problem.

Proof. Given Qc, Qw and a feasible X, from Equation 3.1 we know that QX can

be expressed by X, Qc and Qw, then we have

QX
i,1 = xi ·Qw

i,1 + (1− xi) ·Qc
i,1.

Given QX and δt, we know that R̂X is constructed by setting r̂X
i = 1 if QX

i,1 ≥ δt · α
and r̂X

i = 2 if QX
i,1 < δt · α. It means that if we construct R̂c (R̂w) by setting r̂c

i = 1

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 65

(r̂w
i = 1) if Qc

i,1 ≥ δt · α (Qw
i,1 ≥ δt · α) and r̂c

i = 2 (r̂w
i = 2) if Qc

i,1 < δt · α
(Qw

i,1 < δt · α), then R̂X can be expressed with the given R̂c and R̂w as follows:

1{r̂X
i =1} = xi · 1{r̂w

i =1} + (1− xi) · 1{r̂c
i =1}.

As xi = {0, 1}, if we plug the above derived QX
i,1 and 1{r̂X

i =1} into

F-score∗(QX, R̂X, α) =
∑n

i=1 QX
i,1 · 1{r̂X

i =1}

∑n
i=1[α · 1{r̂X

i =1} + (1− α) ·QX
i,1]

,

and set the parameters bi, di (1 ≤ i ≤ n), β and γ following

(1) bi = di = 0 for qi /∈ Sw, and

(2) bi, di (qi ∈ Sw), β and γ are set as:

bi = Qw

i,1 · 1{r̂w
i =1} −Qc

i,1 · 1{r̂c
i =1}

di = α · (1{r̂w
i =1} − 1{r̂c

i =1}) + (1− α) · (Qw
i,1 −Qc

i,1)

β = ∑n
i=1 Qc

i,1 · 1{r̂c
i =1}

γ = ∑n
i=1[α · 1{r̂c

i =1} + (1− α) ·Qc
i,1],

then the problem is to maximize

F-score∗(QX, R̂X, α) =
∑n

i=1(xi · bi) + β

∑n
i=1(xi · di) + γ

. (3.19)

s.t. X is a feasible assignment vector. As Qc, Qw, R̂c, R̂w, Sw, α, and δt are

known, then xi (1 ≤ i ≤ n) are the only unknown variables. Let all the feasible

assignment vectors form the subspace Ω ⊆ {0, 1}n where |Ω| = (|S
w|
k). If we set

zi = xi (1 ≤ i ≤ n), then each z ∈ Ω corresponds to a feasible assignment vector

X. So the problem is to maximize ∑n
i=1(zi ·bi)+β

∑n
i=1(zi ·di)+γ

s.t. z ∈ Ω ⊆ {0, 1}n, which is a 0-1

FP problem.

Our designed algorithm, called F-score Online Assignment Algorithm, com-

putes the optimal assignment. In each iteration, it calls the Update Algorithm,

66 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

which leverages the Dinkelbach framework to compute the updated δt+1. Note

that the Dinkelbach framework not only returns the updated δt+1, but also de-

rives the corresponding assignment X′ such that δt+1 = F-score∗(QX′ , R̂X′ , α).

Thus, at the time that δ converges, the δ∗ and its corresponding optimal assign-

ment X∗ are both returned by the Update Algorithm. Algorithms 2 and 3 give the

pseudo-codes of F-score Online Assignment Algorithm and Update Algorithm.

Algorithm 2 is the F-score Online Assignment Algorithm, which iteratively

updates δinit until convergence. In each iteration (lines 3-9), it first calls the

Update Algorithm (the details are introduced in the following two paragraphs) to

update δ (line 5), and then decide whether it converges or not (lines 6-9). Finally,

it uses the assignment vector X corresponding to the converging δ to construct

a HIT (lines 10-14). The converging δ and its corresponding assignment vector

X are both optimal (i.e., respectively δ∗ and X∗).

As we have proved that that the problem of computing λt+1 can be reduced

to a 0-1 FP problem (Theorem 4), following the Dinkelbach framework [52] as

discussed in Section 3.4.2, the key is to solve the sub-problem z′ = argmaxz

∑n
i=1(bi − λ · di) · zi. In Theorem 3.4, in order to get z′, due to the constraint of

Ω (containing all feasible assignments), we should select k tasks in Sw (qi ∈ Sw)

with the largest values of (bi − λ · di).

We present the detailed Update Algorithm in Algorithm 3, which leverages

Dinkelbach framework [52] to efficiently compute δt+1 based on δt. For effi-

ciency’s sake it first constructs R̂c, R̂w (lines 5-9), and bi, di (bi ∈ Sw), β, γ (line

10) following the details in Theorem 3.4 . Then it iteratively updates λinit un-

til convergence (lines 11-21). In each iteration (lines 13-21), with known λ, it

selects k tasks in Sw (qi ∈ Sw) with the largest values of (bi − λ · di) (line 14),

which needs O(n) time by PICK algorithm [26]. Then it updates λ following

Equation 3.19 (line 17). Finally it decides whether it converges or not (lines 18-

21).

Time Complexity: We analyze the time complexity of F-score Online Assignment

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 67

Algorithm 2 F-score Online Assignment (Chapter 3).
Input: Qc, Qw, α, k, Sw

Output: HIT

1: δ = 0 ; // initialized as 0 (δinit = 0)
2: while True do
3: δpre = δ
4: // get the updated δt+1 and its corresponding X
5: X, δ = Update(Qc, Qw, α, k, Sw, δ) (Algorithm 3)
6: if δpre == δ then
7: break
8: else
9: δpre = δ

10: end if
11: end while
12: // construct HIT based on the returned X
13: for i = 1 to n do
14: if xi == 1 then
15: HIT = HIT ∪ {qi}
16: end if
17: end for
18: return HIT

Algorithm. It is an iterative algorithm, where it runs Update Algorithm in each it-

eration. Following Dinkelbach framework, Update Algorithm adopts an iterative

approach and takes O(n) in each iteration. Suppose F-score Online Assignment

Algorithm requires u iterations to converge and Update Algorithm requires v iter-

ations to converge, then the total time complexity isO(u · v · n). We conduct ex-

tensive simulated experiments by randomly generating Qc and Qw (n = 2000),

and varying α ∈ [0, 1], which shows that the bound u · v <= 10 in practice

(Section 3.7.1).

Example 5. Given Sw, k, Qc and Qw in Figure 3.2, if the evaluation metric is set

as F-score∗ with α = 0.75, we next derive the optimal assignment for worker w.

With an initial δ1 = δinit = 0, we need to get δ2. The brute-force way5 is to enu-

merate all 6 feasible assignments, where for the first X = [1, 1, 0, 0, 0, 0], we con-

struct QX. As QX
i,1 ≥ δ1 · α = 0 for all 1 ≤ i ≤ n, thus R̂X = [1, 1, 1, 1, 1] and

5Here we present the brute-force way for illustration purpose.

68 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

Algorithm 3 Update (Chapter 3).
Input: Qc, Qw, α, k, Sw, δ
Output: X, λ

1: λ = 0 ; // initialized as 0 (λinit = 0)
2: X = [] ;
3: R̂c = []; R̂w = [];
4: b = d = [0, 0, . . . , 0]; β = 0; γ = 0;
5: // construct R̂c (R̂w) by comparing Qc (Qw) with δ · α; (lines 6-9)
6: for i = 1 to n do
7: if Qc

i,1 ≥ δ · α then r̂c
i = 1 else r̂c

i = 2
8: end for
9: for qi ∈ Sw do

10: if Qw
i,1 ≥ δ · α then r̂w

i = 1 else r̂w
i = 2

11: end for
12: Compute bi, di (1 ≤ i ≤ n) and β, γ following the proof in Theorem 3.4;
13: // Update λ from λinit until convergence; (line 12-21)
14: while True do
15: λpre = λ
16: compute TOP, a set which contains k tasks in Sw that correspond to the

highest value of bi − λ · di;
17: for i = 1 to n do
18: if qi ∈ TOP then xi = 1 else xi = 0
19: end for
20: λ = ∑n

i=1(xi ·bi)+β

∑n
i=1(xi ·di)+γ

;
21: if λpre == λ then
22: break
23: else
24: λpre = λ
25: end if
26: end while
27: return X, λ

F-score∗(QX, R̂X, α) = 0.68. By considering all 6 feasible X, we derive the maximal

F-score∗ value, i.e., 0.7, which corresponds to X = [0, 1, 0, 1, 0, 0]. Then δ2 = 0.7 and

as δ2 6= δ1, we continue with δ2. Again consider X = [1, 1, 0, 0, 0, 0], as δ2 · α = 0.525,

by comparing each QX
i,1 (1 ≤ i ≤ n) with 0.525, we derive R̂X = [1, 1, 0, 0, 1, 0]

and F-score∗(QX, R̂X, α) = 0.832. By considering all 6 feasible X, the assignment

X = [1, 1, 0, 0, 0, 0] corresponds to the maximal F-score∗, and δ3 = 0.832 6= δ2. In

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 69

the third iteration, similarly the assignment X = [1, 1, 0, 0, 0, 0] corresponds to the

δ4 = 0.832. As δ4 = δ3, we have δ∗ = 0.832 and return X∗ = [1, 1, 0, 0, 0, 0].

Compared with Accuracy∗ in Example 4, which assigns q2 and q4 with the highest

benefits, here the optimal assignment is q1 and q2 if the evaluation metric is F-score∗

with α = 0.75. The reason is that α = 0.75 focuses on Precision, and it tries to assign

tasks such that the estimated probability for the target label L1 is of high confidence (or

Qi,1 is high). Thus it is more beneficial to assign q1 compared with q4, as Qw
1,1 (0.818)

≥ Qw
4,1 (0.75).

3.6 Computing the Current and Estimated Distribution

Matrices

In this section, we examine how to compute Qc and Qw in Section 3.6.1

and 3.6.3 respectively. Since computing these two matrices requires some pa-

rameters, Section 3.6.2 discusses the parameters and the existing heuristics to

compute them.

3.6.1 Current Distribution Matrix

When a worker completes a HIT, based on D = {D1, D2, . . . , Dn}, we com-

pute the parameters (including prior probability and worker model) and Qc.

As Qc
i,j represents the probability that task qi’s true label is Lj, we compute Qc

i,j

based on the answer set of qi, i.e., Di. From Bayes’ theorem we get

Qc
i,j = P(ti = j | Di) =

P(Di | ti = j) · P(ti = j)
P(Di)

. (3.20)

Thus Qc
i,j ∝ P(Di | ti = j) · P(ti = j). It means that if we derive P(Di | ti =

j) · P(ti = j) for each label Lj (1 ≤ j ≤ `), then we can normalize and finally get

Qc
i,j for 1 ≤ j ≤ `. We next discuss how to compute P(ti = j) and P(Di | ti = j):

(1) P(ti = j) is the prior probability which represents that a task’s true label is

70 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

Lj, and it is commonly regarded as the proportion of tasks whose true label is

Lj, which is the same among different tasks, so w.l.o.g., we denote pj = P(ti =

j). Existing works [19, 91, 92, 192] usually estimated the prior as the expected

fraction of tasks whose ground truth is label Lj, i.e.,

pj = E[
∑n

i=1 1{ti=j}
n

] =
∑n

i=1 Qc
i,j

n
.

(2) P(Di | ti = j) is the probability that the answer set for task qi is Di given that

the task qi’s true label is Lj. Assume that the answers in Di are independently

answered by different workers (which was also adopted in [49,80,92,127,211]).

Let aw
i denote the index of answered label for qi by worker w, then

P(Di | ti = j) = ∏
(w,j′)∈Di

P(aw
i = j′ | ti = j),

where P(aw
i = j′ | ti = j) is the probability that worker w answers label Lj′ given

the true label is Lj, which can be expressed by worker model (Section 3.6.2).

Initially, Qc is set as uniform distribution for each task qi, i.e., Qc
i,j =

1
` for 1 ≤

j ≤ `.

3.6.2 Parameters

For the issue about how to model a worker’s quality, several works [80,100,

127, 211] define a worker w’s quality as a single value mw ∈ [0, 1] called Worker

Probability (WP) and

P(aw
i = j′ | ti = j) =

 mw, for j = j′

1−mw

`−1 , for j 6= j′
.

Some other works [19, 92, 200] define a worker w’s quality as a `× ` matrix Mw

called Confusion Matrix (CM) and

P(aw
i = j′ | ti = j) = Mw

j,j′ for 1 ≤ j, j′ ≤ `.

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 71

For example, if an application has two labels, an example of WP for worker w is

mw = 0.6 and an example of CM for worker w is Mw =

0.6 0.4

0.3 0.7

. In experi-

ments (Section 3.7.2) we study the properties of different worker models on real

datasets. For the initialization of WP and CM, each worker can be assumed as a

perfect worker in the beginning (the assumption made by some prior work, e.g.,

Ipeirotis et al. [92]). Then for WP, mw = 1; while for CM, Mw
j,j = 1 for 1 ≤ j ≤ `

and Mw
j,j′ = 0 for j 6= j′. Next Example 6 shows how to compute Qc based on

WP and prior.

Example 6. Suppose a task q2 with three labels (` = 3) has been answered by two work-

ers: D2 = {(w1, L3), (w2, L1)}, where the worker models are mw1 = 0.7, mw2 = 0.6

and the priors are p1 = p2 = p3 = 1
3 . In order to compute Qc

2, based on Equation 3.20,

we get Qc
2,1 = P(t2 = 1 | D2) ∝ P(aw1

2 = 3 | t2 = 1) · P(aw2
2 = 1 | t2 = 1) · P(t2 =

1) = 1−mw1
`−1 ·mw2 · p1 = 0.03 and similarly Qc

2,2 ∝ 0.01, Qc
2,3 ∝ 0.0467. By normal-

ization, we get Qc
2 = [0.346, 0.115, 0.539].

To compute the worker model and prior parameters, we leverage the

EM [49] algorithm, which uses the answer set as input, and adopts an iterative

approach (in each iteration, E-step and M-step are applied) to update all param-

eters until convergence. The EM algorithm has been widely used [19,91,92,192]

to infer the parameters and has a fast convergence rate. There are some other

works [91,92,169,182,183,200] studying how to derive worker model and prior

parameters, and they can be easily adapted to our system. Note that the EM

algorithm is run regularly offline (e.g., every 100 answers), thus it could detect

the change of workers’ qualities gradually (e.g., at first a worker is a bad worker,

and as time goes by, the worker improves his/her quality). It might also be an

interesting future work to see whether more recent input from workers should

be given a higher weight (e.g., use a time-decaying function to weigh the past

input of the worker).

72 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

3.6.3 Estimated Distribution Matrix

We next discuss how to compute Qw based on Qc and w’s worker model.

For each qi ∈ Sw, the computation of Qw
i consists of two steps: in the first step,

we estimate lw
i , which is denoted as the index of the label that worker w will

answer for qi; in the second step, we construct an estimated answer set (denoted

as Dw
i) for qi by adding a tuple containing lw

i into Di, i.e., Dw
i = Di ∪ {(w, lw

i)},
and then Qw

i can be computed based on Dw
i . We next talk about the details.

First Step: In order to estimate lw
i , we first compute the label distribution that

worker w will answer qi. We can derive P(aw
i = j′ | Di) by considering all

possible true labels of task qi:

P(aw
i = j′ |Di) = ∑`

j=1 P(aw
i = j′ | ti = j, Di) · P(ti = j |Di). (3.21)

(1) Given ti = j is known, aw
i = j′ is independent of Di, so P(aw

i = j′ | ti =

j, Di) = P(aw
i = j′ | ti = j), which can be derived by w’s worker model. (2) We

have Qc
i,j = P(ti = j | Di). So we can compute P(aw

i = j′ | Di) for 1 ≤ j′ ≤ `.

Next, we predict lw
i by capturing the label distribution, and the weighted

random sampling method [59] is leveraged to select a label index lw
i ∈

{1, 2, . . . , `}, where the label index j has the probability P(aw
i = j | Di) to be

sampled out.

Second Step: To derive Qw
i , we first construct Dw

i = Di ∪ {(w, lw
i)}, then Qw

i,j =

P(ti = j | Dw
i) ∝ P(Dw

i | ti = j) · pj. Similar to Section 3.6.1, we get P(Dw
i | ti =

j) = P(aw
i = lw

i | ti = j) ·∏(w,j′)∈Di
P(aw

i = j′ | ti = j). Take a further step, by

considering Equation 3.20, we get

Qw
i,j ∝ Qc

i,j · P(aw
i = lw

i | ti = j), (3.22)

thus Qw
i can be computed by normalization if we get Qc

i,j · P(aw
i = lw

i | ti = j)

for 1 ≤ j ≤ `. We next give an example (Example 7) to show how to compute

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 73

Qw based on Qc in Figure 3.2.

Example 7. Given Qc in Figure 3.2, suppose worker w with mw = 0.75 requests a

HIT. To compute Qw, we take Qw
1 as an example. In the first step we derive the label

distribution to predict `w
1 . Following Equation 3.21, P(aw

1 = 1 |D1) = ∑2
j=1 P(aw

1 =

1 | t1 = j) · P(t1 = j |D1) = 0.75 · 0.8+ 0.25 · 0.2 = 0.65 and P(aw
1 = 2 |D1) = 0.35,

thus the label distribution is [0.65, 0.35]. After weighted random sampling, suppose we

get `w
1 = 1. In the second step, following Equation 3.22, the proportion can be derived

by multiplying P(aw
1 = 1 | t1 = j) to Qc

1,j (1 ≤ j ≤ 2), which is (0.8 · 0.75) :

(0.2 · 0.25). To normalize the proportion, we get Qw
2 = [0.923, 0.077]. Similarly other

Qw
i for qi ∈ Sw can be computed and Qw can be constructed in Figure 3.2.

3.7 Experiments

We have conducted experiments on both simulated datasets (Section 6.1)

and real datasets (Section 6.2).

3.7.1 Experiments on Simulated Data

We first describe the experimental settings (Section 6.1.1), then evaluate the

performance of F-score∗ (Section 6.1.2), and finally examine the online assign-

ment algorithms (Section 6.1.3)

Settings for Simulated Data

We show how to generate distribution matrices in simulated experiments.

For F-score, as it focuses on a target label (L1), to generate an n × 2 distribu-

tion matrix Q, each task qi’s (1 ≤ i ≤ n) distribution is generated as follows:

first the probability for target label is randomly generated as Qi,1 ∈ [0, 1], then

Qi,2 = 1−Qi,1. For Accuracy, to generate an n× ` distribution matrix Q, for each

task qi (1 ≤ i ≤ n), we randomly generate Qi,j ∈ [0, 1] for 1 ≤ j ≤ `, and then

74 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

normalize Qi to get a distribution. To achieve statistical significance, we per-

form each experiment for 1000 times and record its average value. Experiments

are implemented in Python on a 16GB memory Ubuntu server.

Evaluating Our Techniques for F-Score*

As directly computing E[F-score(T, R, α)] is inefficient, an approximation

function F-score∗(Q, R, α) is proposed in Section 3.4.2. In this section, we eval-

uate this approximation on randomly generated distribution matrices. We first

evaluate the approximation error, and then show the performance of its optimal

result vector selection algorithm.

Approximation Error. We study how the proposed function F-score∗(Q, R, α) is

approximate to E[F-score(T, R, α)] from Figure 3.3(a)-(c). In Figure 3.3(a), we

vary α ∈ [0, 1] and n ∈ [20, 50] to observe the approximation error. For a fixed

α and n, we randomly generate Q and result vector R, and record the approx-

imation error ε = | F-score∗(Q, R, α)−E[F-score(T, R, α)] | in the figure (note

that the error is averaged over 1000 repeated trials). It shows that as n varies

in [20, 50], the approximation error decreases, and when n = 20, the errors for

different α are smaller than 0.5%. As α varies in [0, 1], the average error reaches

the highest at around α = 0.5. Moreover, an interesting observation is that the

curve is not symmetric, especially when α = 1 (which is Precision) and α = 0

(which is Recall). The reason is as follows:

(1) For Precision, we can express E[Precision(T, R)] as

E[
∑n

i=1 1{ti=1} · 1{ri=1}

∑n
i=1 1{ri=1}

] =
∑n

i=1 Qi,1 · 1{ri=1}

∑n
i=1 1{ri=1}

= F-score∗(Q, R, 1),

thus we have ε = 0 as α = 1;

(2) For Recall, we can express E[Recall(T, R)] as

E[
∑n

i=1 1{ti=1} · 1{ri=1}

∑n
i=1 1{ti=1}

] ≈
∑n

i=1 Qi,1 · 1{ri=1}

∑n
i=1 Qi,1

= F-score∗(Q, R, 0),

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 75

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
p
p
ro

x
im

at
io

n
 E

rr
o
r

(
ε
)

α

n=20
n=30
n=40
n=50

(a) Error: Varying α

 0

 100

 200

 300

0.0% 0.1% 0.2% 0.3% 0.4%

F
re

q
u
en

cy

Approximation Error (ε)

(b) Error: Frequency

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

 0 200 400 600 800 1000

A
p
p
ro

x
im

at
io

n
 E

rr
o
r

(
ε
)

The Number of Questions (n)

(c) Error: Varying n

 0%

 5%

10%

15%

20%

25%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u
al

it
y
 I

m
p
ro

v
em

en
t

(
∆

)

α

(d) Improvement: Varying α

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 3 6 9 12 15

F
re

q
u
en

cy

Iterations to Converge (c)

(e) Efficiency: Convergence

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0 2*10
3

4*10
3

6*10
3

8*10
3

10
4

T
im

e
 (

in
 S

e
c
o
n
d
s)

The Number of Questions

(f) Efficiency: Varying n

Figure 3.3: Evaluating F-Score* (Simulation).

thus we have ε 6= 0 as α = 0.

Furthermore, to observe the distribution of ε, in Figure 3.3(b), we set n = 50

and α = 0.5, and record the frequency of ε over 1000 trials. We observe that the

error is centered around the mean 0.19%, and ranges from 0% to 0.31%, which

76 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

is small and stable. To observe how ε changes for a larger n, in Figure 3.3(c)

we fix α = 0.5 and record ε by varying n ∈ [0, 103]. The curve shows that ε

consistently decreases and it conforms to the error bound (i.e., ε = O(n−1)) as

derived in Section 3.4.2. Especially when n = 1000, the average ε ≤ 0.01%,

which is fairly small.

To summarize, the proposed function F-score∗(Q, R, α) (Equation 5.4) is a

good approximation of E[F-score(T, R, α)] in practice.

Optimal Result Vector Selection. In Figure 3.3(d)-(f), we study the result vector

selection. Existing works [83, 166, 192] evaluate F-score by choosing the result of

each task as the label with the highest probability. We first study the quality

improvement by using our optimal returned result vector algorithm. Let R∗

denote the optimal result vector, i.e., R∗ = argmaxR F-score∗(Q, R, α). Let R̃ =

[r̃1, r̃2, . . . , r̃n] denote the result vector chosen by the existing works [83,166,192],

i.e., r̃i = 1 if Qi,1 ≥ Qi,2 (or Qi,1 ≥ 0.5) and r̃i = 2 if otherwise. We set n = 2000

and vary α ∈ [0, 1], where for a fixed α, we randomly generate Q, and respec-

tively compute R∗ and R̃ based on Q. Then we define the quality improvement

∆ as follows:

∆ = E[F-score(T, R∗, α)]−E[F-score(T, R̃, α)], (3.23)

and we record ∆ in Figure 3.3(d). It can be observed that R∗ improves the qual-

ity of R̃ a lot. As α varies in [0, 1], about 25% of the values of α result in an

improvement of over 10%. We also observe that the curve is asymmetric bowl-

shaped, especially when α is around 0.65, ∆ becomes zero. Next we apply the

approximated function F-score∗ to verify this interesting phenomenon in the-

ory. For some unknown α′, if R̃ is equal to R∗ (or R̃ = R∗),

(1) as R̃ is constructed by comparing with the threshold 0.5, thus from Theo-

rem 3.2 we know the threshold θ = λ∗ · α′ = 0.5 and

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 77

(2) as λ∗ = F-score∗(Q, R∗, α′), and R∗ = R̃, we have

λ∗ =
∑n

i=1 1{Qi,1≥0.5} ·Qi,1

α′ ·∑n
i=1 1{Qi,1≥0.5} + (1− α′) ·∑n

i=1 Qi,1
.

Taking λ∗ · α′ = 0.5 inside, we can obtain ∑n
i=1 Qi,1 · 1{Qi,1≥0.5} = 0.5 ·[

∑n
i=1 1{Qi,1≥0.5} + (1

α′ − 1) · ∑n
i=1 Qi,1

]
. Note that as we randomly generate

Qi,1 (1 ≤ i ≤ n) for all tasks, it makes Qi,1 (1 ≤ i ≤ n) uniformly dis-

tributed in [0, 1]. Thus if we take the expectation on both sides of the ob-

tained formula, and apply the properties of uniform distribution, we can derive

0.75 · n
2 = 0.5 ·

[n
2 + (1

α′ − 1) · 0.5 · n
]
, and then get α′ = 0.667, which verifies

our observation (around 0.65).

As the time complexity of optimal vector selection algorithm (Section 3.4.2)

is O(c · n), we next evaluate the bound of c (#iterations to converge) in Fig-

ure 3.3(e). For a fixed n = 2000, we vary α from 0 to 1 with a step of 0.1,

and for each α, we randomly generate Q and record c by running our algo-

rithm. Figure 3.3(e) illustrates the frequency of c for all α. It can be seen that

c ≤ 15 in general (for different α). To evaluate the efficiency with a larger n, we

vary n ∈ [0, 104] and record the running time in Figure 3.3(f), which shows that

the time linearly increases with n, and our algorithm finishes within 0.05s even

when n is large (n = 104).

Evaluating Online Assignment’s Efficiency

We evaluate the online assignment algorithm’s efficiency in Figure 3.4(a)-

(d). First we compare different ways of initialization in our algorithm. A ba-

sic way is to initialize δinit = 0. By considering that the optimal F-score∗ for

QX∗ may not be far away from the optimal F-score∗ for Qc (as they are only

different in k tasks’ distributions), we propose another way of initialization:

δ′init = maxR F-score∗(Qc, R, α), which can be computed using the optimal re-

sult vector selection algorithm (Section 3.4.2). To compare their efficiency, in

78 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
 (

 i
n
 S

e
c
o
n
d
s

)

α

Basic Intial δinit
Advanced Initial δ

/

init

(a) Different Initializations

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

 i
n
 S

e
c
o
n
d
s

)
k

(b) Effect of k

 0

 5000

 10000

 15000

 20000

 0 2 4 6 8 10

F
re

q
u
en

cy

Iterations to Converge (uv)

(c) Bounds of u · v

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 2x10
3

4x10
3

6x10
3

8x10
3

10
4

T
im

e
(

in
 S

ec
o
n
d

s
)

The Number of Questions (n)

F-score*
Accuracy*

(d) Assignment Efficiency

Figure 3.4: Evaluating Efficiency of Assignments (Simulation).

Figure 3.4(a) we set n = 2000, k = 20, and vary α ∈ [0, 1]. For a fixed α, we

randomly generate Qc and a confusion matrix, then Qw can be computed (Equa-

tion 3.22). We run our algorithm with respective δinit and δ′init, and record the

time in Figure 3.4(a). It can be seen that both initializations are efficient (≤ 0.3s),

but there is a sudden increase as α ≥ 0.95 for δinit (mainly due to the fact that

big α focuses on Precision, that is, only confident tasks for L1 will be returned,

which leads to a big δ∗, and δinit = 0 is far away from δ∗). For δ′init, it is steady

with different α, as the initialization is computed by considering both Qc and α.

So we use δ′init to initialize in later experiments.

We next evaluate the performance of different k in Figure 3.4(b). We set n =

2000 and vary k ∈ [5, 50] to observe the assignment’s efficiency, which shows

that it is invariant with k. The main reason is that our algorithm iteratively

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 79

updates δ, and the update solves a 0-1 FP problem via Dinkelbach framework,

which is invariant of the size k. To evaluate the bound for u · v, in Figure 3.4(c),

we set n = 2000 and vary α from 0 to 1 with a step of 0.1. For each α, we generate

Qc and Qw, and record the frequency of u · v in Figure 3.4(c). It showed that

generally u · v ≤ 10 for different α.

We then evaluate the assignment’s efficiency for Accuracy∗ and F-score∗

with a larger n. We set k = 20, α = 0.5, and vary n ∈ [0, 104] in Figure 3.4(d),

which shows that both algorithms are efficient. For example, both of them finish

within 0.3s when n = 104. As reported in [93], the number of HITs for a certain

task is usually ≤ 5000, even for the top invested requesters. Therefore, our

assignment algorithms can work well in a real crowdsourcing platform. More-

over, the assignment time both linearly increases for Accuracy∗ and F-score∗,

but with a larger factor in F-score∗, as it has to deal with the converging com-

plexity (i.e., u · v).

To summarize, the assignment algorithms are both efficient for Accuracy∗

and F-score∗, and they work well even for a large number of tasks (e.g., n = 104).

3.7.2 Experiments for Real Datasets

We first discuss the experimental setup (Section 6.2.1), then evaluate the

properties of different worker models (Section 6.2.2), and finally compare with

existing systems (Section 6.2.3).

Settings for Real Datasets

We generate five applications from real-world datasets (their ground truth

is known for evaluation purposes). The result quality for the first two applica-

tions are evaluated in Accuracy, which is introduced as follows:

Films Poster (FS): FS uses the top 500 films (with posters) with the highest rat-

80 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

ings from IMDB6. We generate 1,000 tasks, where each task asks the crowd to

compare two different films and the coming worker should decide whether one

film is published earlier (<) or later (≥) than the other.

Sentiment Analysis (SA): SA uses the Twitter7 dataset to label the sentiments

of tweets w.r.t. different companies. It contains 5,152 hand-classified tweets. We

select 1,000 tweets from them and each task asks the crowd to label the senti-

ment (“positive”, “neutral” or “negative”) of a tweet w.r.t. the related company.

The result quality for the other three applications is evaluated in F-score

(with different α), which is introduced as follows:

Entity Resolution (ER): ER uses Product8 dataset to evaluate whether the de-

scriptions of two products refer to the same product or not. It contains 1,180,452

product pairs. For each pair (r1,r2), we compute the Jaccard similarity (r1∩r2
r1∪r2

) and

select 2,000 pairs with similarity≥ 0.7 as our tasks. Each task contains a product

pair and the coming worker should decide whether they are “equal” or “non-

equal”. It is evaluated using balanced F-score for the “equal” label (α = 0.5).

Positive Sentiment Analysis (PSA): Based on the demand that a company man-

ager may want to select positive sentiment comments for their products with

high confidence (emphasizing Precision), we generate PSA by selecting 1,000

tweets related to Apple company from the Twitter7 dataset. Each task is to ask

the crowd about whether the sentiment of a tweet related to Apple is “positive”

or “non-positive”. As it emphasizes Precision, we set the evaluation metric as

F-score for “positive” where α = 0.75.

Negative Sentiment Analysis (NSA): From another perspective, a company

manager may want to collect as many negative sentiment comments as possible

for their products (emphasizing Recall), then NSA is generated by selecting 1,000

tweets related to Apple company from the Twitter7 dataset. Each task is to ask

6http://www.imdb.com/
7http://www.sananalytics.com/lab/twitter-sentiment/
8http://dbs.uni-leipzig.de/file/Abt-Buy.zip

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 81

Table 3.2: The Statistics of Each Application.
Data Labels n k m B Evaluation Metric
FS L1 =“<”, L2 =“≥” 1000 4 750 $15 Accuracy

SA
L1 =“positive”,
L2 =“neutral”,
L3 =“negative”

1000 4 750 $15 Accuracy

ER
L1 =“equal”,

L2 =“non-equal”
2000 4 1500 $30

F-score for L1

(α = 0.5)

PSA
L1 =“positive”,

L2 =“non-positive”
1000 4 750 $15

F-score for L1

(α = 0.75)

NSA
L1 =“negative”,

L2 =“non-negative”
1000 4 750 $15

F-score for L1

(α = 0.25)

the crowd about whether the sentiment of a tweet related to Apple is “negative”

or “non-negative”. It is evaluated using F-score for “negative” where α = 0.25

(emphasizing Recall).

We compare QASCA with other five systems, i.e., Baseline, CDAS [127],

AskIt! [27], MaxMargin and ExpLoss:

(1) Baseline: It randomly assigns k tasks to a coming worker.

(2) CDAS [127]: It adopts a quality-sensitive answering model to measure the

confidence of tasks’ current results, and terminates assigning the tasks which

have already got confident results. It assigns k non-terminated tasks.

(3) AskIt! [27]: It uses an entropy-like method to define the uncertainty of each

task, and assigns k most uncertain tasks.

(4) MaxMargin: It selects the next task with the highest expected marginal im-

provement, disregarding the characteristics of the worker, and it assigns k se-

lected tasks.

(5) ExpLoss: It selects the next task by considering the expected loss, defined as

minj ∑`
j′=1 pj′ · 1{j 6=j′} (1 ≤ j ≤ `), and it assigns k selected tasks.

82 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

As workers may vary in quality for different rounds, we need to use the

same set of workers in the comparison of all six systems. To achieve this, when

worker w comes, we use each system to assign k = 4 tasks, then k× 6 = 24 tasks

are batched into a HIT in a random order and the HIT will be assigned to worker

w. Following this way, we can evaluate six systems in a “parallel” way with the

same set of workers. We pay each worker $0.12 for doing a HIT, and assign each

task to z = 3 workers on average, which are typical experimental settings in

AMT [192,195]. The detailed settings are listed in Table 3.2. Take FS application

as an example: there are n = 1000 generated tasks, and the “parallel” way

assigns m = n×z
k = 1000×3

4 = 750 HITs in total for all six systems, where each

system corresponds to k = 4 tasks in a HIT and each system takes B = m×$0.12
6 =

$15 for FS. When HITs are finished, we compute the result quality w.r.t. the

corresponding evaluation metric based on the tasks’ ground truth and report

their comparison results. All the HITs are published during 5:00 pm∼ 10:00 pm

(PDT) on weekdays, and all the crowdsourcing applications are finished within

24 hours. The number of workers participated in five applications FS, SA, ER,

PSA and NSA are respectively 97, 101, 193, 104, and 101.

We implement QASCA in Python using the Django web framework, and

deploy it on a 16GB memory Ubuntu server. We conduct experiments on a

widely-used crowdsourcing platform: AMT. We use the “external-HIT” way

provided by AMT which embeds the generated HTML pages (by our server)

into its frame and workers directly interact with our server through the frame.

When a worker comes, we can identify the worker from the individual worker-

id provided by AMT. Then we can dynamically batch the selected tasks (from

different systems) in a HIT for the coming worker.

Evaluating Worker Models

In this section, we especially study the selection of worker models in com-

puting the distribution matrix. Recall that Section 3.6.2 reviews two typical

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 83

Table 3.3: Comparisons Between Worker Models.
FS SA ER PSA NSA

CM 93.33% 87.09% 82.02% 91.73% 88.43%
WP 93.33% 78.64% 72.80% 92.61% 87.01%

worker models used in existing works: Worker Probability (WP) and Confu-

sion Matrix (CM). Intuitively CM is better than WP as it is more complex. Even

though what we observe from real datasets validates the intuition, we try to ex-

plain some interesting observations. We first collect the crowd’s answers from

the five published applications on AMT.

In Table 3.3, we compare WP and CM on five applications by leverag-

ing the ground truth (ti) of each task. Based on the collected answer set

D = {D1, D2, . . . , Dn}, for each worker w we compute the real WP and CM

as follows
m̃w =

∑n
i=1 1{(w,ti)∈Di}

∑n
i=1 ∑`

j=1 1{(w,j)∈Di}
,

M̃w
j,j′ =

∑n
i=1 1{ti=j}·1{(w,j′)∈Di}

∑n
i=1(1{ti=j}·∑`

z=1 1{(w,z)∈Di})
.

(3.24)

We leverage the real priors (computed as p̃j =
∑n

i=1 1{ti=j}
n for 1 ≤ j ≤ `) and

two respective real worker models to derive the distribution matrix based on

Equation 3.20, and then the optimal result vector R∗ w.r.t. corresponding eval-

uation metric can be computed. Finally we evaluate the quality of R∗ using

the ground truths. To avoid overfitting, we randomly select 80% of the tasks

answered by each worker to compute WP and CM, respectively. The random

process is repeated over 1000 trails and we record the average quality of the

results in Table 3.3. We observe that CM performs better than WP for SA and

ER applications, while they perform approximately the same for the other three

applications.

To explain this, we know that m̃w performs equally with M̃w only if the fol-

lowing requirements hold: (1) M̃w
j,j′ = M̃w

j,j′′ for j′ 6= j 6= j′′ (non-triangular

elements in M̃w, which expresses the relations between pairwise labels); (2)

84 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

M̃w
j,j = M̃w

j′,j′ (triangular elements in M̃w, which expresses the difficulty of in-

dividual label).

CM is better than WP on SA and ER, as they do not satisfy the above re-

quirements: for SA, if a task’s true label is “positive”, a worker is more likely to

answer “neutral” compared with “negative”, i.e., M̃w
1,2 > M̃w

1,3, which violates

the first requirement, as there exists relations between pairwise labels; for ER,

two product descriptions are “equal” only if all features (brand, color, etc.) are

the same, while they are “non-equal” once a different feature is spotted, which

implies that identifying a “non-equal” pair is easier than correctly identifying

an “equal” pair, i.e., M̃w
1,1 < M̃w

2,2 (easier means a higher probability), which vio-

lates the second requirement, as different labels have different difficulties.

To summarize, the above observations among labels in the two applications

(SA and ER) can only be captured by CM other than WP. However, the labels in

the other three applications (FS, PSA and NSA) do not have explicit relations or

difficulties, which perform similarly for WP and CM. As CM performs at least

as good as WP, we use the CM worker model in later experiments.

End-to-End Experiments

We compare QASCA with five other systems on five crowdsourcing appli-

cations in AMT.

Improvement of Optimal Result Selection. As we have validated the improve-

ment in Section 3.7.1 on simulated datasets, here we further explore its benefit

on real datasets. Recall the definition of R∗ and R̃ in Section 3.7.1.

As the ground truth vector T is known on real datasets, we define the real

quality improvement w.r.t. different result vectors (R∗ and R̃) as

∆̂ = F-score(T, R∗, α)− F-score(T, R̃, α). (3.25)

As HITs are completed, we compute R∗ and R̃ based on Q by time, and record ∆̂

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 85

Table 3.4: The Average Quality Improvement (∆̂).
Baseline CDAS AskIt! MaxMargin ExpLoss

ER (α = 0.5) 2.59% 2.69% 4.56% 5.49% 4.32%
PSA (α = 0.75) 4.14% 2.96% 1.26% 2.08% 1.66%
NSA (α = 0.25) 14.12% 10.45% 12.44% 14.26% 9.98%

at each time-stamp. Finally after all HITs are completed, we report the average ∆̂

for three applications (i.e., ER, PSA and NSA)9 with the evaluation metric F-score

in Table 3.4. Recall that the three applications ER, PSA and NSA have different

α (i.e., 0.5, 0.75 and 0.25), and their corresponding ∆ in simulated experiments

(Figure 3.3(d)) are around 2%, 1% and 9%, respectively. In Table 3.4, we observe

that the average ∆̂ are larger than zero on all applications, which means that all

systems can benefit from choosing the optimal result vector R∗. We also observe

that NSA (α = 0.25) has a bigger improvement compared with ER and PSA,

which conforms to the observation in simulated experiments. Note that the

main reason that ∆̂ may have some differences from ∆ is that in our simulated

experiments, the Qi,1 for 1 ≤ i ≤ n is uniformly distributed. While in reality,

as a task qi gets more answers, the computed distribution Qi may become more

confident (either Qi,1 is close to 1 or 0). To summarize, for F-score, all systems

can benefit from choosing the optimal result vector R∗ rather than returning a

label with the highest probability (R̃).

System Comparison Results. We next show the main results, i.e., the real result

quality compared with other systems on all applications in Figure 3.5(a)-(e). We

collect the completed HITs by time and calculate the corresponding result qual-

ity based on the derived results of different systems. Since we have shown that

the quality improves a lot by selecting the optimal result vector R∗ for F-score∗

both in simulated datasets (Figure 3.3(d)) and real datasets (Table 3.4). To make

a fair comparison, we apply this optimization (i.e., selecting R∗) to all systems

9In Theorem 3.1 we have proved that R∗ = R̃ for Accuracy∗, so we did not include the appli-
cations with the evaluation metric Accuracy (i.e., FS and SA).

86 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

Table 3.5: Overall Result Quality (All HITs completed).
Dataset FS SA ER PSA NSA
Baseline 86.40% 72.20% 71.07% 80.85% 74.73%
CDAS 90.20% 73.80% 73.75% 81.58% 75.68%
AskIt! 87.90% 72.20% 71.78% 81.95% 73.16%
QASCA 98.30% 84.60% 85.96% 95.70% 86.65%

MaxMargin 88.00% 73.30% 72.02% 83.92% 75.96%
ExpLoss 87.30% 72.90% 71.36% 82.43% 73.38%

when the evaluation metric is F-score.

From Figure 3.5(a)-(e), we can observe that in the beginning, when the

number of completed HITs is small, all systems have similar performance, as

they all do not know much information about tasks or workers. However,

QASCA dominates other systems as time goes by. This is because QASCA as-

signs the best k tasks for each coming worker to maximize the evaluation metric

value (Accuracy∗ or F-score∗), while other systems do not explicitly consider

the impact of evaluation metrics on result quality in their task assignment pro-

cess. For a clear comparison, Table 3.5 shows the final result quality value when

all HITs are completed, and QASCA leads other systems over 8% for all appli-

cations. To be specific, QASCA leads the second best system by 8.1%, 10.8%,

12.21%, 11.78% and 10.69% on five real-world datasets (FS, SA, ER, PSA and

NSA), respectively. We can also observe that MaxMargin outperforms ExpLoss, as

for the inherently ambiguous tasks, they will have high expected loss (ExpLoss

will continuously assign them); while the marginal benefit of assigning these

tasks will be much lower as more answers are collected (MaxMargin can save

the assignments for more beneficial tasks).

We compare the efficiency of different systems in Figure 3.6(a). To make

a fair comparison, for an application in each system, we record the worst case

assignment time during the assignment process for all HITs. It is shown that all

systems are efficient, and the worst case assignment of all systems can be fin-

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 87

 50%

 60%

 70%

 80%

 90%

100%

 0 150 300 450 600 750

F
S

:
A

cc
u
ra

cy

Completed HITs

Baseline
AskIt!
CDAS

QASCA
MaxMargin

ExpLoss

(a) FS: Accuracy

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

 0 150 300 450 600 750

S
A

:
A

cc
u
ra

cy

Completed HITs

Baseline
AskIt!
CDAS

QASCA
MaxMargin

ExpLoss

(b) SA: Accuracy

 50%

 60%

 70%

 80%

 90%

100%

 0 300 600 900 1200 1500

E
R

:
F

-s
co

re
 (

 α
=

0
.5

)

Completed HITs

Baseline
AskIt!
CDAS

QASCA
MaxMargin

ExpLoss

(c) ER: F-score

 40%

 50%

 60%

 70%

 80%

 90%

100%

 0 150 300 450 600 750

P
S

A
:

F
-s

co
re

 (
 α

=
0
.7

5
)

Completed HITs

Baseline
AskIt!
CDAS

QASCA
MaxMargin

ExpLoss

(d) PSA: F-score

 60%

 70%

 80%

 90%

100%

 0 150 300 450 600 750

N
S

A
:

F
-s

co
re

 (
 α

=
0
.2

5
)

Completed HITs

Baseline
AskIt!
CDAS

QASCA
MaxMargin

ExpLoss

(e) NSA: F-score

Figure 3.5: End-to-End System Comparisons.

88 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

ished within 0.06s, which is fairly acceptable in real applications. Even though

QASCA is less efficient than other systems due to its complexity in assignments,

it can significantly improve the result quality (over 8%). The reason why ER

runs slower is that it contains 2000 tasks while other applications contain 1000

tasks.

Estimation of Worker Quality. We next examine how the estimated quality of

workers is different from the real quality of workers10 by ranging the percent-

age of completed HITs. Let us denote the real CM as M̃w and the estimated CM

as Mw. For a worker w, we further define the estimation deviation of worker

quality as the absolute difference of estimated quality and real quality, i.e.,
1

`×` ·∑
`
j=1 ∑`

j′=1 |Mw
j,j′ − M̃w

j,j′ |. Then we calculate the mean estimation deviation by

averaging the calculated estimation deviation among all workers. The smaller

the mean estimation deviation is, the closer the estimated worker quality (Mw)

is to the real one (M̃w). We report the mean estimation deviation by ranging

the percentage of completed HITs for all datasets in Figure 3.6(b). It shows that

as more HITs are completed, the estimated worker quality gets closer to the

real one, which may explain why QASCA performs much better compared with

other systems as time goes by. That is, as more HITs are completed, the worker’s

quality is more accurately estimated, then QASCA takes the desired quality met-

ric into consideration and can better leverage the estimated worker’s quality to

judge how the worker’s answers might affect the quality metric if tasks are as-

signed. Then it selects the assignment that could maximize the quality metric.

3.8 Related Work

Since we have reviewed most of the related works of crowdsourcing in

Chapter 2, this section only highlights the part related to evaluation metrics.

10The real quality of each worker is calculated by leveraging the ground truth T and the answer
set D. We can follow Section 3.7.2 (Equation 3.24) to compute the real CM.

CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT 89

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Baseline CDAS AskIt! QASCA MaxMargin ExpLoss

E
ff

ic
ie

n
cy

 (
 i

n
 S

ec
o
n
d
s

)

FS
SA
ER

PSA
NSA

(a) Efficiency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 20% 40% 60% 80% 100%

M
ea

n
 E

st
im

at
io

n
 D

ev
ia

ti
o
n

Percent of Completed HITs

FS
SA
ER

PSA
NSA

(b) Mean Estimation Deviation

Figure 3.6: Efficiency and Mean Estimation Deviation.

Accuracy [44,91,92,127,161] and F-score [96,132,155,192,195,199,215] are two

widely used evaluation metrics for crowdsourcing applications, where Accuracy

evaluates the overall quality and F-score focuses on the quality of a specific label.

Note that there are other metrics defined based on different purposes. In entity

resolution, there are also several cluster-based metrics, such as K-measure [111],

GMD measure [139] and Rand-index [176]. For strings, similarity-based metrics

including Jaccard, Dice, Cosine and Edit Distances are defined and used [50,

185,194]. We focus on studying the task-based metrics and propose solutions to

estimate the result quality based on distribution matrices.

3.9 Chapter Summary

In this chapter, we have studied the task assignment problem in the task-

based setting. To solve the problem, we proposed a novel assignment frame-

work by incorporating evaluation metrics into assignment strategies. We gen-

eralized the widely used existing evaluation metrics (Accuracy and F-score) to

be able to quantify the result quality w.r.t a distribution matrix. We designed

optimal result vector selection algorithms and two respective efficient online

assignment algorithms for Accuracy and F-score. We built the QASCA system

by integrating our novel assignment framework with AMT, and evaluated our

90 CHAPTER 3. QUALITY-AWARE ONLINE TASK ASSIGNMENT

system on five real applications. The experimental results showed that QASCA

achieved much better result quality than existing approaches.

In next chapter, we will focus on studying the task assignment problem in

another setting: worker-based setting, i.e., we want to make a wise decision of

selecting workers, such that the tasks in hand can be completed successfully

and economically by the selected workers.

91

Chapter 4

Optimal Jury Selection Problem

4.1 Introduction

Due to advances in crowdsourcing technologies, computationally challeng-

ing tasks (e.g., sentiment analysis, entity resolution, document translation, etc.)

can now be easily performed by human workers on the Internet. As reported

by the Amazon Mechanical Turk in August 2012, over 500,000 workers from

190 countries worked on human intelligence tasks (HITs). The large number of

workers and HITs have motivated researchers to develop solutions to stream-

line the crowdsourcing process [33, 69, 151].

In general, crowdsourcing a set of tasks involves the following steps: (1)

distributing tasks to workers; (2) collecting the workers’ answers; (3) deciding

final result; and (4) rewarding the workers. An important task assignment prob-

lem in the task-base setting is: how should workers be chosen, so that the tasks in hand

can be completed with high quality, while minimizing the monetary budget available?

A related question, called the Jury Selection Problem (or JSP), has been recently

proposed by Cao et al. [33]. Similar to the concept from law courts, a jury, or jury

set denotes a subset of workers chosen from the available worker pool. Given a

monetary budget and a task, the goal of JSP is to find the jury with the highest

92 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Optimal Jury Selection SystemDecision Making Task

Is Bill Gates
now the CEO
of Microsoft ?

 YES (70%) NO (30%)

A B C D E F G

(0.77, $9) (0.7, $5) (0.8, $6) (0.65, $7) (0.6, $5) (0.6, $2) (0.75, $3)

All candidate Workers Set (quality, cost)
Budget Optimal Jury Set Quality Required

5 { F, G } 75% 5
10 { C, G } 80% 9
15 { B, C, G } 84.5% 14
20 { A, C, F, G } 86.95% 20

Budget-Quality Table B C G

(0.7, $5) (0.8, $6) (0.75, $3)

Budget 14

Figure 4.1: Optimal Jury Selection System.

expected performance within the budget constraint. The kind of tasks stud-

ied in [33] is called the decision-making task: a question that requires an answer

of either yes or no (e.g., “Is Bill Gates still the CEO of Microsoft now?”) and

has a definitive ground truth. Decision-making tasks [33] are commonly used

in crowdsourcing systems because of their conceptual simplicity. The authors

of [33] were the first to propose a system to address JSP for this kind of tasks.

In this chapter, we go beyond [33] and perform a comprehensive investi-

gation of this problem. Particularly, we ask the following questions: (1) Is the

solution in [33] optimal? (2) If not, what is an optimal solution for JSP? To un-

derstand these issues, let us first illustrate how [33] solves JSP.

Figure 4.1 shows a decision-making task, to be answered by some of the

seven workers labeled from A to G where each worker is associated with a qual-

ity and a cost. The quality ranges from 0 to 1, indicating the probability that the

worker correctly answers a question. This probability can be estimated by using

her background information (e.g., her performance in other tasks) [33,127,183].

The cost is the amount of monetary reward the worker can get upon finishing a

task. In this example, A has a quality of 0.77 and a cost of 9 units. For a jury, the

jury cost is defined as the sum of workers’ costs in the jury and the jury quality

(or JQ) is defined as the probability that the result returned by aggregating the

jury answers is correct. Given a budget of B units, a feasible jury is a jury whose

jury cost does not exceed B. For example, if B = $20, then {B, E, F} is a feasible

jury, since its jury cost, or $5 + $5 + $2 = $12, is not larger than $20.

To solve JSP, a naive solution is to compute the JQ for every feasible jury,

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 93

and return the one with the highest JQ. In [33], it studies how to compute JQ

for a jury where the jury’s returned result is decided by Majority Voting (MV). In

short, MV returns the result as the one corresponding to the most workers. In

the following, we consider each worker’s answer as a “vote” for either “yes” or

“no”. Let us consider {B, E, F} again, the probability that these workers gives a

correct result according to MV is 0.7 · 0.6 · 0.6+ 0.7 · 0.6 · (1− 0.6)+ 0.7 · (1− 0.6) ·
0.6 + (1− 0.7) · 0.6 · 0.6 = 69.6%. Moreover, since {A, C, G} yields the highest

JQ among all the feasible juries, it is considered to be the best solution by [33].

As illustrated above, MV is used to solve JSP in [33]. In addition to MV,

researchers have proposed a variety of voting strategies, such as Bayesian Voting

(BV) [127], Randomized Majority Voting [110], and Random Ballot Voting [9].

Like MV, these voting strategies decide the final result of a decision-making task

based on the workers’ votes. For example, BV computes the posterior probabil-

ity of answers according to Bayes’ Theorem [23], based on the workers’ votes,

and returns the answer having the largest posterior probability.

In this chapter, we investigate an interesting problem: is it possible to find

the optimal voting strategy for JSP among all voting strategies? One simple

answer to this question is to consider all voting strategies. However, as listed

in Table 4.2, the number of existing strategies is very large. Moreover, multi-

ple new strategies may emerge in the future. We address this question by first

studying the criteria of a strategy that produce an optimal solution for JSP (i.e.,

given a jury, the JQ of the strategy is the highest among all the possible voting

strategies). This is done by observing that voting strategies can be classified into

two major categories: deterministic and randomized. A deterministic strategy ag-

gregates workers’ answers without any degree of randomness; MV is a typical

example of this class. For a randomized strategy, each answer is returned with

some probability. Using this classification, we present the criteria required for

a voting strategy that leads to the optimal solution for JSP. We discover that

BV satisfies the requirements of an optimal strategy. In other words, BV is the

94 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

optimal voting strategy with respect to JQ, and will consistently produce better

quality juries than the other strategies.

How to solve JSP with BV then? A straightforward solution is to enumerate

all feasible juries, and find the one with the largest value of JQ. However, this

approach suffers from two major problems:

1. Computing the JQ of a jury for BV requires enumerating an exponentially

large number of workers’ answers. In fact, we show that this problem is

NP-hard;

2. The number of feasible juries is exponentially large.

To solve Problem 1, we develop a polynomial-time approximation algo-

rithm, which enables a large number of candidate answers to be pruned, with-

out a significant loss of accuracy. We further develop a theoretical error bound

of this algorithm. Particularly, our approximate JQ computation algorithm is

proved to yield an error of not more than 1%. To tackle Problem 2, we lever-

age a successful heuristic, the simulated annealing heuristic, by designing local

neighborhood search functions. To evaluate our solutions, we have performed

extensive evaluation on real and synthetic crowdsourced data. Our experimen-

tal results show that our algorithms effectively and efficiently solve JSP. The

quality of our solution is also consistently better than that of [33].

We also study how to allow the provider of the tasks to place her confidence

information (called prior) on the answers of the task. She may associate a “belief

score” on the answers to the tasks, before the crowdsourcing process starts. For

instance, in Figure 4.1, if she is more confident that Bill Gates is still the CEO of

Microsoft, she can assign 70% to yes, and 30% to no. Intuitively, we prove that

under BV, the effect of prior is just the same as regarding the task provider as

another worker, having the same quality values as the prior.

Figure 4.1 illustrates our crowdsourcing system, which we called the “Op-

timal Jury Selection System”. In this system, the task provider published a

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 95

decision-making task. Then, based on the the workers’ information (i.e., their

individual quality and cost), a “budget-quality table” is generated. In this table,

each row contains a budget, the computed optimal jury, its estimated jury qual-

ity and the required budget for the jury. Based on this table, the task provider

can conveniently decide the best budget-quality combination. For example, she

may deem that increasing the budget from 15 units to 20 units is not worth-

while, since the quality increases only by around 2.5%. In this example, the task

provider selects the jury set {B, C, G} that is the best under a budget of 15 units.

This chosen jury set would cost her only 14 units.

Recall that [33] focuses on addressing JSP under MV on decision-making

tasks and we address the optimality of JSP on decision-making tasks by consid-

ering all voting strategies, where each worker’s quality is modeled as a single

parameter. In reality, multiple choice tasks [127, 160, 200] are also commonly

used in crowdsourcing and several works [19, 160, 182] model each worker as

a confusion matrix rather than a single quality score. We also briefly discuss

here the optimality of JSP for other task types and worker models, and how our

solutions can be extended to these other variants.

The rest of this chapter is arranged as follows. We describe the data model

and the problem definition in Section 4.2. In Section 4.3, we examine the re-

quirements of an optimal voting strategy for JSP, and show that BV satisfies

these criteria. We present an efficient algorithm to compute JQ of a jury set in

Section 4.4 and develop fast solutions to solve JSP in Section 4.5. In Section 4.6,

we present our experimental results. We discuss how our solutions can be ex-

tended for other task types and worker models in Section 4.7. In Section 4.8, we

review the related works and Section 4.9 concludes the chapter.

96 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

4.2 Data Model & Problem Definition

We now describe our data model in Section 4.2.1 and define the jury selec-

tion problem in Section 4.2.2.

4.2.1 Data Model

In this chapter, we focus on the decision-making tasks where each task has

two possible answers (either yes or no). We use 1 and 0 to denote yes and no, re-

spectively. We assume that each task has a latent true answer (or ground truth)

t ∈ {0, 1}, which is unknown in advance. The task provider usually assigns a

prior on the task, which describes her prior knowledge in the probability distri-

bution of the task’s true answer. We denote the prior by α where Pr(t = 0) = α,

and Pr(t = 1) = 1− α. If the task provider has no prior knowledge for the task,

then we assume α = 0.5.

A jury (or jury set), denoted by J, is a collection of n workers drawn from a

set of N candidate workers W = {j1, j2, . . . , jN}, i.e., J ⊆ W, |J| = n. Without

loss of generality, let J = {j1, j2, . . . , jn}. In order to infer the ground truth (t),

we leverage the collective intelligence of a jury, i.e, we ask each worker to give

a vote for the task. We use V, a voting, to denote the set of votes (answers) given

by a jury J, and so V = {v1, v2, . . . , vn} where vi ∈ {0, 1} is the vote given by ji.

We assume the independence of each worker’s vote, an assumption also used

in [33, 92, 127, 160].

We follow the worker model in previous works [33, 127, 211], where each

worker ji is associated with a quality qi ∈ [0, 1] and a cost ci. The quality qi indi-

cates the probability that the worker conducts a correct vote, i.e., qi = Pr(vi = t),

and the cost ci represents the money (or incentive) required for ji to give a vote.

A few works [33, 127, 183] have recently addressed how to derive the quality

and the cost of a worker by leveraging the backgrounds and answering history

of individuals. Thus, similar to [33], we assume that they are known in ad-

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 97

vance. Also, we have dealt with the simple case that each worker has the same

cost requirement in Section 4.5.

We remark that the optimality of JSP and our solutions can be extended to

address other task types and worker models used in [19, 127, 160, 160, 182, 200].

We will briefly discuss these extensions in Section 4.7.

4.2.2 Problem Definition

Let B be the budget of a task provider, i.e., a maximum of B cost units can

be given to a jury to collect their votes. Our goal is to solve the Jury Selection

Problem (denoted by JSP) which selects a jury J under the budget constraint

(∑ji∈J ci ≤ B) such that the jury’s collective intelligence is maximized.

The collective intelligence of a jury is closely related to the Voting Strategy,

denoted by S, which estimates the true answer of the task based on the prior,

the jury and their votes. We say the estimated true answer is the result of the

voting strategy. A detailed discussion about the voting strategy is given in Sec-

tion 4.3.1.

In order to quantify the jury’s collective intelligence, we define the Jury

Quality (or JQ in short) which essentially measures the probability that the result

of the voting strategy is correct. The score of JQ is given by function JQ(J, S, α).

We will give a precise definition for JQ in Section 4.3.2.

Let Θ denote the set of all voting strategies and C denote the set of all fea-

sible juries (i.e., C = {J | J ⊆ W ∧∑ji∈J ci ≤ B}). The aim of JSP is to select the

optimal jury J∗ such that

given α and qi, ci (for i = 1, 2, . . . , N) (4.1)

J∗ = argmax
J∈C

max
S∈Θ

JQ(J, S, α) (4.2)

Note that existing work [33] only focuses on majority voting strategy (MV)

98 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Table 4.1: Notations Used in Chapter 4.
Symbol Description

t the ground truth for a task, and t ∈ {0, 1}
α prior given by the task provider, and α = Pr(t = 0)
W a set of all candidate workers W = {j1, j2, . . . , jN}
J a jury, J ⊆W and |J| = n, J = {j1, j2, . . . , jn}
V a voting given by J, and V = {v1, v2, . . . , vn}
qi the quality of worker ji and qi ∈ [0, 1]
ci the cost of worker ji
B the budget provided by the task provider
Θ a set containing all voting strategies
C the set of all possible juries within budget constraint

and solves argmaxJ∈C JQ(J,MV, 0.5), which, as we shall prove later, is sub-

optimal for JSP.

In the rest of the chapter, we first discuss how to derive the optimal voting

strategy S∗ such that JQ(J, S∗, α) = maxS∈Θ JQ(J, S, α) (Section 4.3). We then

talk about the computation of JQ(J, S∗, α) (Section 4.4) and finally address of

problem of finding J∗ (Section 4.5).

Table 4.1 summarizes the symbols used in this chapter.

4.3 Optimal Voting Strategy

In this section, we present a detailed description for the voting strategy in

Section 4.3.1. We then formally define JQ in Section 4.3.2. Finally, we give an

optimal voting strategy with respect to JQ in Section 4.3.3.

4.3.1 Voting Strategies

As mentioned, a voting strategy S gives an estimation of the true answer t

based on the prior α, the jury J and their votes V. Thus, we model a voting

strategy as a function S(V, J, α), whose result is an estimation of t. Based on

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 99

whether the result is given with degree of randomness, we can classify the vot-

ing strategies into two categories: deterministic voting strategy and randomized

voting strategy.

Definition 4.1. A deterministic voting strategy S(V, J, α) returns the result as 0 or 1

without any degree of randomness.

Definition 4.2. A randomized voting strategy S(V, J, α) returns the result as 0 with

probability p and 1 with probability 1− p.

Example 8. The majority voting strategy (or MV) is a typical deterministic vot-

ing strategy, and it gives result as 0 if more than half of workers vote for 0 (i.e.,

∑n
i=1 (1− vi) ≥ n+1

2); otherwise, the result is 1.

Its randomized counterpart is called randomized majority voting strategy (or

RMV), which returns the result with probability proportional to the number of votes.

That is, RMV returns 0 with probability p = 1
n ∑n

i=1 (1− vi), and 1 with probability

1− p.

Note that randomized strategies are often introduced to improve the error

bound for worst-case analysis [123]. And thus, they are widely used when the

worst-case performance is the main concern. While in practice, in most of the

cases, deterministic strategies are used due to less randomness.

Table 4.2: Classification of Voting Strategies.

Deterministic Voting Strategies Randomized Voting Strategies
Majority Voting (MV) [33] Randomized Majority Voting (RMV) [110]

Half Voting [141] Random Ballot Voting [9]
Bayesian Voting [127] Triadic Consensus [20]

Weighted MV [123] Randomized Weighted MV [123]
· · · · · ·

Table 4.2 shows a few voting strategies, which are introduced in previous

works, and their corresponding category.

100 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

4.3.2 Jury Quality

In order to measure the goodness of a voting strategy S for a jury J, we

introduce a metric called Jury Quality (or JQ in short). We model JQ by a function

JQ(J, S, α) which gives the quality score as the probability of drawing a correct

result under the voting strategy, i.e.,

JQ(J, S, α) = Pr(S(V, J, α) = t) (4.3)

where V ∈ {0, 1}n and t ∈ {0, 1} are two random variables corresponding

to the unknown jury’s voting, and the task’s latent true answer. For notational

convenience, we omit J and α in S when their values are understood and simply

write S(V) instead of S(V, J, α).

Let 1{st} be the indicator function, which returns 1 if the statement st is

true, and 0 otherwise. Let Ω be the domain of V, i.e, Ω = {0, 1}n. JQ(J, S, α)

can be rewritten as follows.

JQ(J, S, α) = 1 · Pr(S(V) = t) + 0 · Pr(S(V) 6= t)

= E[1{S(V)=t}]

= ∑
t∈{0,1}

∑
V∈Ω

Pr(V = V, t = t) ·E[1{S(V)=t}]

We now give a precise definition for JQ as below.

Definition 4.3 (Jury Quality). Given a jury J and the prior α, the Jury Quality (or

JQ) for a voting strategy S, denoted by JQ(J, S, α), is defined as

α ·∑V∈Ω Pr(V = V | t = 0) ·E[1{S(V)=0}]

+ (1− α) ·∑V∈Ω Pr(V = V | t = 1) ·E[1{S(V)=1}].
(4.4)

For notational convenience, we write Pr(V|t = 0) instead of Pr(V = V|t =
0), and Pr(V|t = 1) instead of Pr(V = V|t = 1). Next, we give two marks in

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 101

computing JQ.

1. Since workers give votes independently, we have

Pr(V | t = 0) = ∏n
i=1 q(1−vi)

i · (1− qi)
vi

Pr(V | t = 1) = ∏n
i=1 qvi

i · (1− qi)
(1−vi)

2. E[1{S(V)=0}] and E[1{S(V)=1}] are either 0 or 1 if S is a deterministic voting

strategy; or value of p and 1− p if S is a randomized voting strategy (refer

to Definition 4.2).

We next give an example to illustrate the computation of JQ.

Example 9. Suppose α = 0.5 and there are 3 workers in J with workers’ qualities

as 0.9, 0.6, 0.6 respectively. To compute JQ for MV, we enumerate all possible combi-

nations of V (∈ {0, 1}3) and t (∈ {0, 1}), and show the results in Figure 4.2. The

3rd column in each table represents the probability that a specific combination (V and

t) exists. The 4th column shows the result of MV for each V. The symbol
√

indi-

cates whether MV’s result is correct or not (according to the value of t). And thus,

JQ(J, MV, α) equals to the summation of probabilities where symbol
√

occurs. Take

V = {1, 0, 0} and t = 0 as an example. First, Pr(V = V, t = 0) = 0.018. Since

∑3
i=1(1− vi) = 2 ≥ n+1

2 = 2, we have MV(V) = 0 = t Thus, the probability 0.018

is added to JQ(J,MV, α). Similarly, for V = {1, 0, 0} and t = 1, as MV(V) = 0 6= t,

then Pr(V = V, t = 1) = 0.072 will not be added to JQ(J,MV, α). Considering all

V’s and t’s, the final JQ(J,MV, α) = 79.2%.

4.3.3 Optimal Voting Strategy

In the last two sections, we present a few voting strategies and define Jury

Quality to quantify the goodness of a voting strategy. Thus an interesting ques-

tion is: does an optimal voting strategy S∗ with respect to JQ exist? That is,

102 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

(a) Enumeration of all 23 = 8 possible votings in Ω (t = 0)

(b) Enumeration of all 23 = 8 possible votings in Ω (t = 1)

Figure 4.2: An Example of JQ computation for MV and BV.

given any J and α, JQ(J, S∗, α) = maxS∈Θ JQ(J, S, α). Note that if S∗ exists,

we can then solve JSP without enumerating all voting strategies in Θ (refer to

Definition 4.2).

To answer this question, let us reconsider Definition 4.3 and Equation 4.4.

Let h(V) = E[1{S(V)=0}]. We have (i) h(V) ∈ [0, 1]; and (ii) E[1{S(V)=1}] =

1− h(V). Also, let P0(V) = Pr(V = V, t = 0), and P1(V) = Pr(V = V, t = 1).

Hence, JQ(J, S, α) can be rewritten as

∑
V∈Ω

[P0(V) · h(V) + P1(V) · (1− h(V))]

= ∑
V∈Ω

[h(V) · (P0(V)− P1(V)) + P1(V)]

This gives us a hint to maximize JQ(J, S, α) and find the optimal voting

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 103

strategy S∗. Let h∗(V) = E[1{S∗(V)=0}]. It’s observed that P1(V) is constant for

a given V and h(V) ∈ [0, 1] for all S’s (no matter it’s a deterministic one or a

randomized one). Thus, to optimize JQ(J, S, α), it’s required that

1. if P0(V)− P1(V) < 0, h∗(V) = 0, and so, S∗(V) = 1;

2. if P0(V)− P1(V) ≥ 0, h∗(V) = 1, and so, S∗(V) = 0.

We summarize this observation as below.

Theorem 4.1. Given α, J, and V, the optimal voting strategy, denoted by S∗, decides

the result as follows:

1. S∗(V) = 1 if α ·∏n
i=1 q(1−vi)

i · (1− qi)
vi <

(1− α) ·∏n
i=1 qvi

i · (1− qi)
(1−vi); or

2. S∗(V) = 0, otherwise.

Note that S∗ is a deterministic voting strategy, and it’s essentially a voting

strategy based on the Bayes’ Theorem [57]. The reason is as follows. According

to the Bayes’ Theorem, based on the observed voting V, Pr(t = 0|V = V) =

P0(V)/ Pr(V = V), and similarly Pr(t = 1|V = V) = P1(V)/ Pr(V = V).

Therefore, P0(V)− P1(V) < 0 indicates Pr(t = 0|V = V) < Pr(t = 1|V = V).

And so, 1 has a higher probability to be the true answer than 0. Thus, the voting

strategy based on the Bayes’ Theorem returns 1 as the result, which is consistent

with S∗ in Theorem 4.1. Next, we give a formal definition for Bayesian Voting

(BV) and summarize the above observation in Theorem 4.1.

Definition 4.4. The voting strategy based on the Bayes’ Theorem, denoted by Bayesian

Voting (or BV in short), returns the result as 1, if Pr(t = 0) · Pr(V = V|t = 0) <

Pr(t = 1) · Pr(V = V|t = 0); or 0, otherwise.

Corollary 4.1. BV is optimal with respect to JQ, i.e., S∗ = BV.

Note that the BV is also used in [19, 92, 127]. In the rest of the chapter, we

use S∗ and BV interchangeably. We remark that the optimality of BV is based

104 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

on two assumptions: (1) the prior and workers’ qualities are known in advance;

(2) JQ (Definition 4.3) is adopted to measure the goodness of a voting strategy.

Example 10. Let us reconsider Figure 4.2 and see how JQ(J,BV, α) is computed.

The 5th column shows results given by BV. The two numbers in bracket correspond

to P0(V) and P1(V), respectively. The value in parenthesis is the estimated true an-

swer returned by BV. We again use a symbol
√

to indicate the correct voting result.

Take V = {1, 0, 0} and t = 0 as an example. Since α · (1− q1) · q2 · q3 = 0.018 <

(1− α) · q1 · (1− q2) · (1− q3) = 0.072, we have BV(V) = 1 6= t, thus 0.018 is

not added into JQ(J,BV, α). Otherwise, for V = {1, 0, 0} and t = 0, similarly we

derive that 0.072 is added in JQ(J,BV, α). Recall Example 9, when V = {1, 0, 0}, if

we consider two cases of t, then 0.072 is added into JQ(J, MV, α); but here we have

seen in Example 9 that 0.018 is added into JQ(J,BV, α). By considering all V and t,

we have JQ(J,BV, α) = 90% > JQ(J, MV, α) = 79.2%.

Intuitively, the reason why BV outperforms other voting strategies is that

BV considers the prior and worker’s qualities in deriving the result of a vot-

ing V, and only the one with larger posterior probability is returned. Thus, it

is more likely to return a correct answer than other strategies. For example,

assume α = 0.5 and the voting V = {0, 1, 1} is given by workers with indi-

vidual quality 0.9, 0.6 and 0.6 respectively. As 0.5 · 0.9 · (1− 0.6) · (1− 0.6) >

0.5 · (1− 0.9) · 0.6 · 0.6, BV returns 0 as the result. However, MV does not lever-

age either the prior information or workers’ qualities, and so, it returns 1 as the

result, which is given by two lower quality workers.

Before we go on, we would like to discuss the effect of qi for voting strate-

gies. Intuitively, qi < 0.5 indicates that worker ji is more likely to give an incor-

rect answer than a correct one. Thus, we can either simply ignore this worker in

the jury selection process, or modify her answer according to the specific voting

strategy. For example, for MV, we can regard vote 0 as 1 and vote 1 as 0 if the

vote is given by a worker whose quality is less than 0.5; for BV, according to its

definition, it can reinterpret the vote given by a worker with quality qi < 0.5

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 105

as an opposite vote given by a worker with quality 1 − qi > 0.5. For exam-

ple, let us consider V = {1, 0, 0} and t = 1. Since j2 is a low-quality worker

(q2 = 0.3 < 0.5), BV wisely reinterprets her vote by 1 instead of 0 and views it

as a vote given by a high-quality worker (it views V = {1, 0, 0} as {1, 1, 0} voted

by q1, 1− q2 = 0.7 and q3). And thus, BV returns the correct result 1. The next

lemma states this special property for BV.

Lemma 4.1. Given α and J. Let J′ = J and V ′ = V except that q′i0 = 1− qi0 and

v′i0 = 1− vi0 for some i0. The result of BV remains the same, i.e., BV(V ′, J′, α) =

BV(V, J, α).

Proof. First, we have

q′i0
(1−v′i) · (1− q′i0)

v′i = qi
(1−vi) · (1− qi)

vi , and similarly

q′i0
v′i · (1− q′i0)

(1−v′i) = qi
vi · (1− qi)

(1−vi). According to Theorem 4.1, we have

BV(V ′, J′, α) = BV(V, J, α).

A direct consequence of Lemma 4.1 is as below.

Corollary 4.2. Given α and J. Let J′ = J except that q′i0 = 1− qi0 for some i0. The

score of JQ for BV remains the same, i.e., JQ(J′,BV, α) = JQ(J,BV, α).

Proof. From Lemma 4.1 we know that for a V ∈ Ω, BV(V, J, α) = BV(V ′, J′, α)

and it is easy to derive

Pr(V = V, t = 0 | J) = Pr(V = V ′, t = 0 | J′) and

Pr(V = V, t = 1 | J) = Pr(V = V ′, t = 1 | J′). 11 As the mapping V → V ′

11Note that Pr(V = V, t = 0 | J) is the computation of Pr(V = V, t = 0) by leveraging α and
the jury set J, and similarly Pr(V = V′, t = 0 | J′) is the computation of Pr(V = V′, t = 0) by
leveraging α and the jury set J′. The other two terms Pr(V = V, t = 1 | J) and Pr(V = V′, t =
1 | J′) can be derived in the same way.

106 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

defines a one-to-one correspondence between Ω and Ω, thus JQ(J, BV, α) =

∑
V∈Ω

[
Pr(V = V, t = 0 | J) + Pr(V = V, t = 1 | J)

]
= ∑

V∈Ω

[
Pr(V = V ′, t = 0 | J′) + Pr(V = V ′, t = 1 | J′)

]
= ∑

V′∈Ω

[
Pr(V = V ′, t = 0 | J′) + Pr(V = V ′, t = 1 | J′)

]
= JQ(J′, BV, α).

Corollary 4.2 is an important result since once a low-quality worker (i.e.,

qi < 0.5) is involved, we can transform her to the one with quality of 1− qi > 0.5

without affecting JQ for BV. And therefore, in order to simplify our analysis in

the next two sections, we assume that qi ≥ 0.5 for all workers. In fact, in our

experiments with real human workers, we observed that their qualities were

generally well above 0.5. We thus assume that qi ≥ 0.5 in our subsequent dis-

cussions, without loss of generality.

4.4 Computing Jury Quality for Optimal Strategy

In the previous section, we have proved that BV is the optimal voting strat-

egy with respect to JQ. And thus, in order to solve JSP, we only need to figure

out J∗ such that JQ(J∗, BV, α) is maximized. An immediate question is whether

JQ(J, BV, α) can be computed efficiently. Unfortunately, we find that computing

JQ(J, BV, α) is NP-hard (Section 4.4.1). To alleviate this, we propose an efficient

approximation algorithm with theoretical bounds to compute JQ for BV in this

section.

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 107

4.4.1 NP-hardness of computing JQ(J, BV, α)

Note that [33] has previously proposed an efficient algorithm to compute

JQ(J, MV, 0.5) in O(n log n). However, this polynomial algorithm cannot be

adapted to compute JQ for BV.

The main reason is that computing JQ for BV is an NP-hard problem, which

is denoted as below.

Theorem 4.2. Given α and J, computing JQ for BV, or JQ(J, BV, α), is NP-hard.

The idea of the proof is that the partition problem [153] (a well-known NP-

complete problem) can be reduced to the problem of computing JQ(J, BV, 0.5)

for some J. And so, the computation of JQ(J, BV, 0.5) is not easier than the

partition problem. As computing JQ(J, BV, 0.5) is not in NP (it is not a decision

problem), hence the problem of computing JQ(J, BV, α) for α ∈ [0, 1] is NP-hard.

The partition problem is a decision problem, which is to decide if a given

multi-set W of integer values can be partitioned into two disjoint multi-sets W1

and W2 such that the sum of elements in W1 is equal to the sum of elements

in W2, i.e., ∑e∈W1
e = ∑e∈W2

e. The NP-hard proof of JQ(J, BV, 0.5) is based

on the detailed proof Lemma 4.2 (which proves that adding a worker will not

decrease the JQ). The basic idea of the reduction is that based on the given W,

we try to construct a J and J′ = J ∪ {jn+1}, then if JQ for BV can be computed

(which means that JQ(J, BV, 0.5) and JQ(J′, BV, 0.5) can be computed), then the

answer (“yes” or “no”) to the partition problem of W can be derived based on

whether JQ(J′, BV, 0.5) > JQ(J, BV, 0.5) or JQ(J′, BV, 0.5) = JQ(J, BV, 0.5).

We formally present our proof below.

Proof. Based on the detailed proof in Lemma 4.2, under α = 0.5, we know that

the JQ will not decrease by adding a worker, and the JQ will increase if there

exists a V ∈ Ω, such that P(V|t = 0) · (1− qn+1) < P(V|t = 1) · qn+1 under the

condition that P(V|t = 0) ≥ P(V|t = 1). That is, we have to verify the existence

108 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

of

0 ≤ ln
P(V|t = 0)
P(V|t = 1)

< ln
qn+1

1− qn+1
.

By defining σ(q) = ln q
1−q , g(V) = ln P(V|t=0)

P(V|t=1) and expand P(V|t = 0), P(V|t =
1), then it is transformed to verify the existence of

0 ≤ g(V) = ∑n
i=1

[
(1− 2vi) · σ(qi)

]
< σ(qn+1). (4.5)

That is to say, we need to know if the smallest positive g(V) is less than σ(qn+1),

and we have two observations for g(V):

(1) for a V ∈ Ω, there always exists a V = {v̄1, . . . , v̄n} ∈ Ω, where v̄i = 1− vi

for i ∈ [1, n], and as 1− 2v̄i = 2vi − 1, then g(V) = −g(V), which means that

the values for g(V) where V ∈ Ω are symmetrically distributed around 0, so we

only have to verify the existence of

min
V∈Ω
| g(V) | < σ(qn+1);

(2) for a V ∈ Ω, we consider two possible cases for each vote in g(V):

(i) if vi = 0, then (1− 2vi) · σ(qi) = σ(qi) is added;

(ii) if vi = 1, then −σ(qi) is added.

This motivates us to define D = {d1, d2 · · · dn} for a V, where di = 1− 2vi for

i ∈ [1, n]. If we consider all possible V ∈ Ω, then D ∈ {−1,+1}n.

In summary, in order to decide if adding a worker will increase the JQ, we have

to verify if

G(J) = min
di={−1,+1}

| ∑n
i=1 di · σ(qi) | < σ(qn+1). (4.6)

For example, if J = {j1, j2} and q1 = 0.75, q2 = 0.7. Then σ(q1) =

ln 0.75
1−0.75 ≈ 1.099 and σ(q2) ≈ 0.847, so G(J) ≈ 0.252. If we add a worker

with quality q3 = 0.6, as σ(q3) ≈ 0.405 > G(J), then the JQ will increase,

or JQ(J′, BV, 0.5) = 0.765 > JQ(J, BV, 0.5) = 0.75; otherwise, if the added

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 109

worker is q3 = 0.55, as σ(q3) ≈ 0.201 ≤ G(J), then the JQ stays the same, or

JQ(J′, BV, 0.5) = JQ(J, BV, 0.5) = 0.75.

Then we can easily derive by proof of contradiction that

(1) JQ(J′, BV, 0.5) > JQ(J, BV, 0.5)⇒ G(J) < σ(qn+1);

(2) JQ(J′, BV, 0.5) = JQ(J, BV, 0.5)⇒ G(J) ≥ σ(qn+1).

Given a multi-set W = {w1, w2 · · ·wn} containing n integers, we reduce the

partition problem of W to computing JQ by setting σ(qi) = wi for i ∈ [1, n], then

qi =
ewi

1+ewi ∈ [0.5, 1], and we set σ(qn+1) = 0.5, then qn+1 =
√

e
1+
√

e ∈ (0.5, 1).

Based on our reduction, if JQ is computable, then we can determine

whether JQ(J′, BV, 0.5) is greater or equal to JQ(J, BV, 0.5), which means that

whether the following Equation

G(J) = min
di∈{−1,+1}

| ∑n
i=1 di · wi | < 0.5

satisfies or not can be determined. Consider two cases:

(1) G(J) < 0.5, as G(J) is a non-negative integer, then G(J) = 0, i.e.,

mindi∈{−1,+1} | ∑n
i=1 di · wi | = 0, so the answer to the partition problem of W is

“yes”, as di = 1 or −1 can be regarded as the partition;

(2) G(J) >= 0.5, then we can derive G(J) 6= 0, and the answer to the partition

problem of W is “no” (since if the answer is “yes”, then G(J) must be 0).

In summary, by the reduction we have

(1) JQ(J′, BV, 0.5) > JQ(J, BV, 0.5)⇒ G(J) < 0.5⇒ G(J) = 0⇒ the answer to

the partition problem of W is “yes”;

(2) JQ(J′, BV, 0.5) = JQ(J, BV, 0.5)⇒ G(J) ≥ 0.5⇒ G(J) 6= 0⇒ the answer to

the partition problem of W is “no”.

Thus we have proved the reduction from computing JQ to the partition

problem.

110 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Due to this hardness result, we propose an approximation algorithm. We

first discuss the computation of JQ(J, BV, 0.5) in Section 4.4.2 and 4.4.3, and

give its approximation error bound in Section 4.4.4. Finally, we briefly discuss

how to adapt the algorithm to α ∈ [0, 1] in Section 4.4.5.

4.4.2 Analysis of Computing JQ(J, BV, 0.5)

Let us first give some basic analysis for computing JQ(J, BV, 0.5) before

we introduce our approximation algorithm. To facilitate our analysis, we first

define a few symbols.

• A0(V) = 0.5 · Pr(V | t = 0) · 1{BV(V)=0};

• A1(V) = 0.5 · Pr(V | t = 1) · 1{BV(V)=1};

• V = {v̄1, v̄2, . . . , v̄n}, where v̄i = 1− vi (1 ≤ i ≤ n).

From Figure 4.2 we observe that A0(V) = A1(V). For example,

A0({0, 1, 0}) = A1({1, 0, 1}) = 0.108 and A0({1, 0, 1}) = A1({0, 1, 0}) = 0.

The observation motivates us to consider A0(V) and A1(V) together, and we

can prove that

JQ(J, BV, 0.5) = ∑V∈Ω[A0(V) + A1(V)]

= ∑V∈Ω[A0(V) + A1(V)],
(4.7)

as V → V defines a one-to-one correspondence between Ω and Ω.

We further define u(V) and w(V) as follows.

u(V) = ln Pr(V|t = 0) = ∑n
i=1[(1− vi) ln qi + vi ln(1− qi)],

w(V) = ln Pr(V|t = 1) = ∑n
i=1[vi ln qi + (1− vi) ln(1− qi)],

Let R(V) = u(V)− w(V) and σ(qi) = ln qi
1−qi

(as qi ≥ 0.5, σ(qi) ≥ 0), we

have

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 111

Figure 4.3: Expressing A0(V) + A1(V) using R(V) and u(V).

R(V) =
n

∑
i=1

[(1− 2vi) · σ(qi)], eu(V) =
n

∏
i=1

q(1−vi)
i · (1− qi)

vi . (4.8)

As illustrated in Figure 4.3, we can express A0(V) + A1(V) based on the

sign of R(V) and the value of u(V). 12 And therefore,

JQ(J, BV, 0.5) = ∑
V∈Ω

[1{R(V)>0} · eu(V) + 1{R(V)=0} · eu(V)

2].

Motivated by the above formula, we can apply an iterative approach

which expands J with one more worker at each iteration and thus compute

JQ(J, BV, 0.5) in n total iterations. In the k-th iteration, we consider Vk ∈ {0, 1}k.

We aim to construct a map structure with (key, prob) pairs, where the domain of

key is { R(Vk) | Vk ∈ {0, 1}k }, and the corresponding value of the key, or prob

is

prob = ∑R(Vk)=key ∧ Vk∈{0,1}k eu(Vk) . (4.9)

Suppose in the k-th iteration, such a map structure is constructed. Then in the

next iteration, we can generate a new map structure from the old map structure:

for each (key, prob) in the old map structure, based on the possible choices of

vk+1 and by considering two formulas in Equation 4.8, we have

1. for vk+1 = 0, the new key key + σ(qk+1) is generated and prob · qk+1 is

added to the prob of the new key;

2. for vk+1 = 1, the new key key− σ(qk+1) is generated and prob · (1− qk+1)

12Note that the reason why A0(V) 6= A1(V) when u(V) = w(V) is that as 0.5 · eu(V) = 0.5 ·
ew(V), based on Theorem 4.1, BV(V) = BV(V) = 0, so A0(V) = 0.5 · eu(V) and A1(V) = 0.

112 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

2()q

1()q

1()q
2()q

2()q

2()q

(0,1)

1(1.2,)q

1(1.2,1)q

1 2(2.4,)q q

1 2 1 2(0, (1) (1))q q q q

1 2(2.4, (1)(1))q q

Figure 4.4: Illustrating the Iterative Approach.

is added to the prob of the new key.

Example 11. We give an example to illustrate the above process in Figure 4.4, where

n = 2 and σ(q1) = σ(q2) = 1.2. In the figure, each pair is represented as

“(key, prob)”. Starting from (0, 1), for v1 = 0 and v1 = 1, it respectively creates

(σ(q1) : q1) and (−σ(q1) : (1− q1)) in the first iteration. Then it leverages the stored

(key, prob) pair to generate new pairs in the second iteration by considering different

v2. Note that as σ(q1) = σ(q2), if (σ(q1), q1) takes v2 = 1 and (−σ(q1), (1− q1))

takes v2 = 0, then they go to the same key = 0, and their new prob, q1 · (1− q2) and

(1− q1) · q2 are added together.

4.4.3 Bucket-Based Approximation Algorithm

By our intractability result for JQ we know that the domain of keys, or

{R(V) | V ∈ {0, 1}n} is exponential. In order to address this issue, we set

a controllable parameter numBuckets and map σ(qi) to a bucket integer bi ∈
[0, numBuckets], where the interval between adjacent buckets, called bucket-

size (denoted as δ) is the same. Suppose numBuckets = d · n, i.e., a constant

multiple of the number of jury members, then, for each iteration, the number

of possible values in the key is bounded by 2dn2 + 1 (in the range [−dn2, dn2])

Considering all n iterations, the time complexity is bounded by O(dn3), which

is of polynomial order.

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 113

bucketsize upper0

1()q 2()q

Figure 4.5: Principle of the Bucket Array.

We detail this process in Algorithm 4. To start with, the function

GetBucketArray assigns bi to worker ji based on σ(qi). The computation of

bi proceeds as follows. At first, we fix a range [0, upper] where upper =

maxi∈[1,n] {σ(qi)}. Then, we divide the range into numBuckets of buckets with

equal length, denoted by δ = upper
numBuckets . Finally, each worker ji’s bucket num-

ber bi is assigned to its closet bucket: bi =
⌈

σ(qi)
δ −

1
2

⌉
. Figure 4.5 illustrates an

example where numBuckets = 4. Since σ(q1) is the closet to bucket number 2, so

b1 = 2, and similarly b2 = 3.

After mapping each worker to a bucket bi, we iterate over n workers (step

7-20). For a given worker ji, based on each (key, prob) pair in the stored map SM,

we update key and prob, based on two possible values of vi (steps 14-19)13 in the

new map M. SM will then be updated as the newly derived map M for next

iteration (step 20). Finally, the (key, value) pairs in SM are used in the evaluation

of the Jury Quality (steps 21-25), based on the cases in Figure 4.3.

Pruning Techniques. We can further improve the running time of the approx-

imation algorithm by applying some pruning techniques in Algorithm 6, in or-

der to prune redundant computations. For example, assume n = 5, and the

derived b = [3, 7, 4, 3, 2]. In the second iteration, consider the key = 3 + 7 = 10

(v1 = 0 and v2 = 0). No matter what the rest of the three votes are, the aggre-

gated buckets cannot be negative (since 4 + 3 + 2 = 9 < 10), so we can safely

prune the search space for key = 10 (which takes 23 = 8 computations). To fur-

13Note that as we only care about the sign (+, 0 or −) of R(V), and we approximate σ(qi) as
δ · bi, we can map σ(qi) to bi and add/subtract the integer bi.

114 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Algorithm 4 EstimateJQ (Chapter 4).
Input: J = {j1, j2 · · · jn}, numBuckets , n
Output: ĴQ

1: b = GetBucketArray(J, numBuckets, n);
2: b = Sort(b); // sort in decreasing order, for pruning
3: J = Sort(J); // sort based on worker quality, similar as above
4: aggregate = AggregateBucket(b, n); // for pruning
5: ĴQ = 0; // estimated JQ
6: SM[0] = 1; //initialize a map structure
7: for i = 1 to n do
8: M = map(); //initialize an empty map structure
9: for (key, prob) ∈ SM do

10: f lag, value = Prune(key, prob, aggregate[i]);
11: if f lag =true then
12: ĴQ+ = value;
13: continue // for pruning
14: end if
15: if key + b[i] /∈ M then
16: M[key + b[i]] = 0;
17: end if
18: M[key + b[i]]+ = prob · qi; // for vi = 0
19: if key− b[i] /∈ M then
20: M[key− b[i]] = 0;
21: end if
22: M[key− b[i]]+ = prob · (1− qi); // for vi = 1
23: end for
24: SM = M;
25: end for
26: for (key, prob) ∈ SM do
27: if key > 0 then
28: ĴQ + = prob;
29: end if
30: if key = 0 then
31: ĴQ + = 0.5 · prob;
32: end if
33: end for
34: return ĴQ;

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 115

Algorithm 5 GetBucketArray (Chapter 4).
Input: J = {j1, j2 · · · jn}, numBuckets , n
Output: b

1: b = [0, 0 · · · 0]; // n elements, all 0
2: upper = maxi∈[1,n] σ(qi); // compute upper
3: δ = upper

numBuckets ; // bucketsize
4: for i = 1 to n do
5: b[i] =

⌈
σ(qi)

δ −
1
2

⌉
; // or bi in our explanation

6: end for
7: return b;

Algorithm 6 Pruning Techniques (Chapter 4).

def AggregateBucket(b, n):
aggregate = [0, 0 · · · 0]; // n elements, all 0
for i = n to 1 do

if i = n then
aggregate[i] = b[i];

else
aggregate[i] = aggregate[i + 1] + b[i];

end if
end for
return aggregate

def Prune(key, prob, number):
f lag =false;
if key > 0 and key− number > 0 then

f lag =true; value = prob;
end if
if key < 0 and key + number < 0 then

f lag =true; value = 0;
end if
return f lag, value;

ther increase the efficiency, in Algorithm 6 we first sort the bucket array and J in

decreasing order (step 2-3), guaranteeing that the highest bucket is considered

first, and then compute the aggregate array via AggregateBucket (step 4), which

makes the pruning phase (step 10-13) more efficient. The function Prune uses

aggregate to decide whether to prune or not.

116 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

4.4.4 Approximation Error Bound

Let ĴQ denotes the estimated value returned by Algorithm 4, and JQ de-

notes the real Jury Quality. We evaluate the additive error bound on |JQ− ĴQ|
and can prove that:

ĴQ ≤ JQ and JQ− ĴQ < e
nδ
4 − 1, (4.10)

where n is the number of workers and δ = upper
d·n is the bucketsize. We give

detailed proof below:

Proof. For a V ∈ Ω, let V = {v̄1, . . . , v̄n}, where v̄i = 1 − vi for i ∈ [1, n].

Recall the definition of A0(V), A1(V), u(V), w(V) and R(V) in Section 4.4.2, we

express A0(V) + A1(V) + A0(V) + A1(V) by u(V) and w(V) based on different

signs of R(V) in Figure 4.6. It is easy to verify that if we denote Ω̃ = {0} ×
{0, 1}n−1 (|Ω̃| = 2(n−1)), then

JQ(J, BV, 0.5) = ∑V∈Ω̃[A0(V) + A1(V) + A0(V) + A1(V)].

For a V ∈ Ω̃, let us denote T(V) = A0(V) + A1(V) + A0(V) + A1(V), and from

Figure 4.6 we can derive that T(V) = max{eu(V), ew(V)}. We can also get

JQ(J, BV, 0.5) = ∑V∈Ω̃ T(V).

Recall Algorithm 4, which makes concessions and map σ(qi) to a bucket

number bi, where each bucket is of size δ. So it approximates σ(qi) by δbi. Thus

if we denote

R̂(V) = ∑n
i=1[(1− 2vi) · δbi],

then based on the sign of R̂(V), the values of Â0(V), Â1(V), Â0(V) and Â1(V)

are expressed in Figure 4.7. Let us denote T̂(V) = Â0(V) + Â1(V) + Â0(V) +

Â1(V). Thus based on the sign (+, 0, or −) of R̂(V), the value of T̂(V) will be

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 117

Figure 4.6: Illustrating A0(V), A1(V), A0(V), and A1(V).

(eu(V), eu(V)+ew(V)

2 , or ew(V)) as Figure 4.7 shows, which is the same as Figure 4.6,

as Algorithm 4 only makes concessions to the key by approximating R(V) as

R̂(V). Then the estimated

ĴQ(J, BV, 0.5) = ∑V∈Ω̃ T̂(V)

So we try to find an error bound for the real T(V) in JQ and computed

T̂(V) in ĴQ, i.e., |T(V)− T̂(V)|.

From the analysis above we know that T(V) = max{eu(V), ew(V)} and the

error occurs when the sign of R̂(V) is different from the sign of R(V). For ex-

ample, if R(V) > 0 (i.e., u(V) > w(V)), then T(V) = eu(V) as Figure 4.6 shows;

while if the estimated R̂(V) ≤ 0, say R̂(V) = 0, then T̂(V) = eu(V)+ew(V)

2 < eu(V)

as Figure 4.7 shows. Since T(V) = max{eu(V), ew(V)}, then T̂(V) ≤ T(V), thus

ĴQ(J, BV, 0.5) ≤ JQ(J, BV, 0.5).

Generally, we can derive that

(1) T̂(V) ≤ T(V) and ĴQ(J, BV, 0.5) ≤ JQ(J, BV, 0.5);

(2) the error occurs if there exists a V ∈ Ω̃, such that the sign of R̂(V) is different

from the sign of R(V), and the error, or T(V)− T̂(V) is bounded by the value

|eu(V) − ew(V)|.

From Algorithm 4 we know that |σ(qi)− δbi| ≤ δ
2 for any worker (i ∈ [1, n]).

118 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Figure 4.7: Illustrating Â0(V) , Â1(V) , Â0(V) , and Â1(V).

As we have

|R(V)− R̂(V)| = | ∑n
i=1(1− 2vi) · (σ(qi)− δbi) |

≤∑n
i=1 | (1− 2vi) · (σ(qi)− δbi) |

= ∑n
i=1 | σ(qi)− δbi | ≤

nδ

2
,

then we can derive that if |R(V)| > nδ
2 , the signs of R(V) and R̂(V) are the same.

So we try to know the bound of | eu(V) − ew(V) | under the constraint |R(V)| =
|u(V) − w(V)| ≤ nδ

2 . Note that we also have u(V) + w(V) = ∑n
i=1[ln qi +

ln(1− qi)] = ∑n
i=1 ln [qi · (1− qi)] ≤ −n ln 4.

So the problem is, what is the bound for |eu(V) − ew(V)| with the constraint

below? − nδ
2 ≤ u(V)− w(V) ≤ nδ

2 , (1)

u(V) + w(V) ≤ −n ln 4. (2)

Let us denote u(V) + w(V) = ln c, then from (2) we get c ≤ 1
4n , and as

w(V) = ln c− u(V), we get

|eu(V) − ew(V)| = |eu(V) − c
eu(V)

|.

It is easy to know that g(x) = x− c
x (c > 0) is a strictly increasing function in the

domain x > 0 (as g′(x) = 1 + c
x2 > 0 for x > 0). And take w(V) = ln c− u(V)

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 119

in (1), we can derive

ln c
2
− nσ

4
≤ u(V) ≤ ln c

2
+

nσ

4
,

then we get

|eu(V) − c
eu(V)

| ≤
√

c · e nδ
4 −
√

c · e− nδ
4 .

By setting e
nδ
4 = 1 + ε, we get

|eu(V) − ew(V)| ≤
√

c · e nδ
4 −
√

c · e− nδ
4 =
√

c · ε · (1 + 1
1 + ε

)

< 2
√

c · (e nδ
4 − 1) ≤ 1

2n−1 · (e
nδ
4 − 1).

So given V ∈ Ω̃, we have computed the bound for T(V)− T̂(V). As |Ω̃| =
2(n−1), then by considering all 2(n−1) terms, the error is bounded by

JQ(J, BV, 0.5)− ĴQ(J, BV, 0.5)

< ∑V∈Ω̃
1

2n−1 · (e
nδ
4 − 1) = e

nδ
4 − 1.

We next show that the bound is very small (< 1% by setting d ≥ 200) in

real cases. First we notice that (i) σ(q) is a strictly increasing function and (ii)

σ(0.99) < 5. So let us assume upper < 5. We can safely make the assumption,

since if not, there exists a worker of quality qi > 0.99, and then JQ ∈ (0.99, 1],

as Lemma 4.2 will show. Then we can just return ĴQ = qi > 0.99, which makes

JQ− ĴQ < 1%. After dividing the interval [0, upper] into d · n equal buckets, we

have δ < 5
d·n . Using this δ bound in Equation 4.11, we have JQ− ĴQ < e

5
4·d − 1.

By setting d ≥ 200, the bound is JQ− ĴQ < 0.627% < 1%.

120 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

4.4.5 Incorporation of Prior

In the previous section, we have assumed a prior α = 0.5. Here, we drop

this assumption and show how we can adapt our approaches to a generalized

prior α ∈ [0, 1], given by the task provider. By Theorem 4.3, it turns out this

is equivalent to computing JQ(J′, BV, 0.5), where J′ is obtained by adding a

worker (with quality α) to J:

Theorem 4.3. Given α and J, JQ(J, BV, α) = JQ(J′, BV, 0.5), where J′ = J ∪{jn+1}
and qn+1 = α.

Proof. Let Ω̂ = {0, 1}(n+1), and in order to prove the theorem, we have to verify

∑
V∈Ω

[
α · P(V|t = 0) · 1{BV(V)=0} + (1− α) · P(V|t = 1) · 1{BV(V)=1}

]
= ∑

V∈Ω̂

0.5 ·
[

P(V|t = 0) · 1{BV(V)=0} + P(V|t = 1) · 1{BV(V)=1}
]
.

(4.11)

To prove Equation 4.11, for a V ∈ Ω, we define its two mapping counterparts in

Ω̂ as follows:

(1) V̂ = {v̂1, v̂2, . . . v̂n+1} where v̂i = vi for i ∈ [1, n] and v̂n+1 = 0;

(2) V̂ ′ = {v̂′1, v̂′2, . . . v̂′n+1} where v̂′i = 1− vi for i ∈ [1, n] and v̂′n+1 = 1).

For example, if V = {1, 1, 0}, then V̂ = {1, 1, 0, 0} and V̂ ′ = {0, 0, 1, 1}. We

argue that if we can prove

α · P(V|t = 0) · 1{BV(V)=0} + (1− α) · P(V|t = 1) · 1{BV(V)=1}

=0.5 ·
[

P(V̂|t = 0) · 1{BV(V̂)=0} + P(V̂|t = 1) · 1{BV(V̂)=1}
]
+

0.5 ·
[

P(V̂ ′|t = 0) · 1{BV(V̂′)=0} + P(V̂ ′|t = 1) · 1{BV(V̂′)=1}
]
,

(4.12)

then Equation 4.11 can be proved. As the two sides of Equation 4.12 are re-

spectively A0(V) + A1(V) and [A0(V̂) + A1(V̂)] + [A0(V̂ ′) + A1(V̂ ′)] in Equa-

tion 4.11, so we only have to prove that the mapping V → {V̂, V̂ ′} defines a

one-to-one correspondence from Ω to Ω̂. Since

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 121

(1) for a V ∈ Ω, as mentioned, it is mapped to V̂, V̂ ′ ∈ Ω̂;

(2) for a Ṽ = {ṽ1, ṽ2, . . . , ṽn+1} ∈ Ω̂ : if ṽn+1 = 0, then its mapped voting in Ω is

V where vi = ṽi for i ∈ [1, n], and if ṽn+1 = 1, then its mapped voting in Ω is V

where vi = 1− ṽi for i ∈ [1, n].

So we have proved the one-to-one correspondence, thus we only have to prove

that Equation 4.12 is correct.

For a specific V ∈ Ω, we prove the correctness of Equation 4.12 by consid-

ering two cases:

(1) α · P(V|t = 0) 6= (1− α) · P(V|t = 1), and w.l.o.g. we assume α · P(V|t =

0) > (1− α) · P(V|t = 1):

In this case we prove Equation 4.12 by proving the following two equations

(Equation 4.13 and 4.14):

α · P(V|t = 0) · 1{BV(V)=0}

=0.5 · P(V̂|t = 0) · 1{BV(V̂)=0} + 0.5 · P(V̂ ′|t = 1) · 1{BV(V̂′)=1},
(4.13)

(1− α) · P(V|t = 1) · 1{BV(V)=1}

=0.5 · P(V̂|t = 1) · 1{BV(V̂)=1} + 0.5 · P(V̂ ′|t = 0) · 1{BV(V̂′)=0}.
(4.14)

Here we only prove Equation 4.13 and Equation 4.14 can be proved similarly.

Equation 4.13 can be proved by the followings: α · P(V|t = 0) = P(V̂ ′|t = 1) = P(V̂|t = 0), (i)

BV(V) = BV(V̂) = 0, BV(V̂ ′) = 1. (ii)

For (i), as P(V̂ ′|t = 1)

= P(v̂′n+1 = 1|t = 1) ·∏n
i=1 qv̂′i

i · (1− qi)
1−v̂′i

= α ·∏n
i=1 q(1−vi)

i · (1− qi)
vi = α · P(V|t = 0),

and we can prove similarly that P(V̂|t = 0) = α · P(V|t = 0) , then (i) can be

proved.

122 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

For (ii), as α · P(V|t = 0) > (1− α) · P(V|t = 1), then BV(V) = 0 and we can

prove similarly that P(V̂ ′|t = 0) = (1 − α) · P(V|t = 1), which means that

0.5 · P(V̂ ′|t = 1) > 0.5 · P(V̂ ′|t = 0), then BV(V̂ ′) = 1. And BV(V̂) = 0 can be

proved similarly, then (ii) can be proved.

Thus we have proved Equation 4.13, and Equation 4.14 can be proved similarly.

(2) α · P(V|t = 0) = (1− α) · P(V|t = 1):

In this case we prove Equation 4.12 directly. From the above analysis we can

prove that α · P(V|t = 0) = P(V̂|t = 0) and (1− α) · P(V|t = 1) = P(V̂ ′|t = 0).

As α · P(V|t = 0) = (1− α) · P(V|t = 1), from Theorem 4.1 we know that all

BV(V) = BV(V̂) = BV(V̂ ′) = 0. Thus we can directly prove Equation 4.12 by

taking the above derived formulas into it.

Then we have proved Equation 4.12 for the two cases, thus Equation 4.11,

or the theorem can be proved.

Thus we can use Algorithm 4 for any prior α, by adding to the jury a

pseudo-worker of quality α. Moreover, the approximation error bound proved

in Section 4.4.5 also holds.

To summarize, to compute JQ(J, BV, α), we have developed an approxi-

mation algorithm with time complexity O(d · (n + 1)3), with an additive error

bound within 1%, for d ≥ 200.

4.5 Jury Selection Problem (JSP)

Now we focus on addressing J∗ = argmaxJ∈C JQ(J, BV, α), for C, the set of

all feasible juries (i.e., C = {J | J ⊆W ∧∑n
i=1 ci ≤ B}).

Before formally addressing JSP, we turn our attention to two monotonicity

properties of JQ(J, BV, α): with respect to varying the jury size (|J|), and with

respect to a worker ji’s quality (qi). These properties can help us solve JSP under

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 123

certain cost constraints.

Lemma 4.2 (Monotonicity on jury size). Given α and J , JQ(J, BV, α) ≤
JQ(J′, BV, α), where J′ = J ∪ {jn+1}.

Proof. For a V ∈ Ω, recall our definition of A0(V) and A1(V) as below:

• A0(V) = α · Pr(V | t = 0) ·E[1{BV(V)=0}];

• A1(V) = (1− α) · Pr(V | t = 1) ·E[1{BV(V)=1}].

Based on Theorem 4.1, we can derive that

A0(V) + A1(V) = max{α · Pr(V|t = 0), (1− α) · Pr(V|t = 1)}.

And if a worker jn+1 is added, V ∈ Ω becomes two votings: V(0) and V(1) in

{0, 1}n+1:

(1) V(0) = {v(0)1 , v(0)2 , . . . , v(0)n+1} where v(0)i = vi for i ∈ [1, n] and v(0)n+1 = 0 ;

(2) V(1) = {v(1)1 , v(1)2 , . . . , v(1)n+1} where v(1)i = vi for i ∈ [1, n] and v(1)n+1 = 1.

So the corresponding

A0(V(0)) + A1(V(0)) = max{α · Pr(V(0)|t = 0), (1− α) · Pr(V(0)|t = 1)},

A0(V(1)) + A1(V(1)) = max{α · Pr(V(1)|t = 0), (1− α) · Pr(V(1)|t = 1)}.

So if we can prove the following inequality

max{ α · P(V(0) | t = 0) , (1− α) · P(V(0) | t = 1) } +

max{ α · P(V(1) | t = 0) , (1− α) · P(V(1) | t = 1) }

≥ max{ α · P(V | t = 0) , (1− α) · P(V | t = 1) },

(4.15)

then we can prove the lemma.

In order to prove the above inequality, let us denote b = α · P(V|t = 0) and

r = (1− α) · P(V|t = 1), then Equation 4.15 can be transformed to

max{b · qn+1, r · (1− qn+1)}+ max{b · (1− qn+1), r · qn+1} ≥ max{b, r}.

124 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Without loss of generality, we assume b ≥ r, then the right hand side (rhs) of

Equation 4.15 is b, and for the left hand side (lhs) there are two summands: for

the first summand, b · qn+1 ≥ r · (1 − qn+1), while based on the comparison

between b · (1− qn+1) and r · qn+1, we consider two cases:

(1) b · (1− qn+1) ≥ r · qn+1: in this case the lhs becomes b · qn+1 + b · (1− qn+1) =

b, which is equal to the rhs b;

(2) b · (1− qn+1) < r · qn+1: in this case the lhs becomes b · qn+1 + r · qn+1, since

from the condition of (2) we know b · qn+1 + r · qn+1 > b, so the lhs is greater

than the rhs.

A direct consequence of Lemma 4.2 is that “the more workers, the better

JQ for BV”. So for the case that each worker will contribute voluntarily (ci = 0

for 1 ≤ i ≤ N) or the budget constraint satisfies on all subsets of the candidate

workers W (i.e., B ≥ ∑N
i=1 ci), we can select all workers in W.

Lemma 4.3 (Monotonicity on worker quality). Given α and J. Let J′ = J except

that q′i0 ≥ qi0 ≥ 0.5 for some i0, then JQ(J′, BV, α) ≥ JQ(J, BV, α).

Proof. To prove the lemma, we just have to prove that given α and J,

JQ(J(1), BV, α) ≥ JQ(J(2), BV, α) where J(1) = J ∪ {j′n+1}, J(2) = J ∪ {jn+1},
and q′n+1 ≥ qn+1 ≥ 0.5.

Based on the proof of Lemma 4.2, recall the definition of b and r, we know

that if we can prove the following inequality

max{ b · q′n+1, r · (1− q′n+1) }+ max{ b · (1− q′n+1), r · q′n+1 }

≥max{ b · qn+1, r · (1− qn+1) }+ max{ b · (1− qn+1), r · qn+1 },
(4.16)

then we can prove the lemma. To prove it, w.l.o.g. we assume b ≥ r, then

max{ b · q′n+1, r · (1− q′n+1) } = b · q′n+1, and

max{ b · qn+1, r · (1− qn+1) } = b · qn+1.

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 125

Based on the comparison between b · (1− qn+1) and r · qn+1, we consider two

cases:

(1) b · (1− qn+1) ≥ r · qn+1, then

max{b · q′n+1, r · (1− q′n+1)}+ max{b · (1− q′n+1), r · q′n+1}

≥ b · q′n+1 + b · (1− q′n+1) = b =

max{b · qn+1, r · (1− qn+1)}+ max{b · (1− qn+1), r · qn+1};

(2) b · (1− qn+1) < r · qn+1, then

max{b · q′n+1, r · (1− q′n+1)}+ max{b · (1− q′n+1), r · q′n+1}

≥ q′n+1 · (b + r) ≥ qn+1 · (b + r) =

max{b · qn+1, r · (1− qn+1)}+ max{b · (1− qn+1), r · qn+1}.

Thus we have proved the lemma.

Lemma 4.3 shows that a worker with higher quality contributes not less in

JQ compared with a lower quality worker. For the case that each worker has the

same cost requirement c, i.e., ci = cj = c for i, j ∈ [1, N], we can select the top-k

workers sorted by their quality in decreasing order, where k = min
{⌊ B

c

⌋
, N
}

.

Although the above two properties can indicate us to solve JSP under cer-

tain conditions, the case for JSP with arbitrary individual cost is much more

complicated as we have to consider not only the worker ji’s quality qi, but also

her cost ci, and both may vary between different workers.

We can formally prove JSP is NP-hard in Theorem 4.4. Note that JSP, in

general, is NP-hard due to the fact that it cannot avoid computing JQ(J, BV, α)

at each step, which is an NP-hard problem itself. Moreover, even if we assume

access to a polynomial oracle for computing JQ(J, BV, α), e.g., Algorithm 4, the

problem still remains NP-hard, by following the reduction to a n-th order Knap-

sack Problem [33].

126 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Theorem 4.4. Solving JSP is NP-hard.

Proof. For ease of presentation, we denote X = [x1, x2, . . . , xN] where xi = 1

or 0 indicates that worker ji is selected or not. And given α and W, we denote

F(X, W) = JQ(J, BV, α) where J = {ji | xi = 1, 1 ≤ i ≤ N}.

We have proved in Theorem 4.2 that given α and J, computing JQ(J, BV, α)

is NP-hard, which means that given a constant K ∈ [0, 1], a known α and J,

verifying the problem JQ(J, BV, α) ≥ K (or K ≥ JQ(J, BV, α)) is NP-hard. Since

if not, we can use bisection method to tune K in order to get the exact value of

JQ(J, BV, α) in PTIME.14

We next prove that JSP is NP-hard by constructing a special case, that is

given α, J = {j1, j2, . . . , jn} and a constant K ∈ [0, 1], we reduce the problem of

verifying JQ(J, BV, α) ≥ K (or K ≥ JQ(J, BV, α)) to solving JSP.

For a known K ∈ [0, 1], we construct a multi-set W ′ = J ∪ {jn+1}, where

q′i = qi for i ∈ [1, n] and q′n+1 = K. Let C′ = {c′1, c′2, . . . , c′n+1} where c′i = 1 for

i ∈ [1, n] and c′n+1 = n.

Then given W ′, C′ and B = n, the result of JSP can be reduced to solving

X∗ = argmax
X∈{X(1), X(2)}

{ F(X(1), W ′), F(X(2), W ′) },

where X(1) and X(2) are

(i) X(1) = [x(1)1 , x(1)2 , . . . , x(1)n+1] where x(1)i = 1 for i ∈ [1, n] and x(1)n+1 = 0;

(ii) X(2) = [x(2)1 , x(2)2 , . . . , x(2)n+1] where x(2)i = 0 for i ∈ [1, n] and x(2)n+1 = 1.

The reason is that

(1) if xn+1 = 1, then any other xi = 1 for i 6= n + 1 will make the constraint

∑n+1
i=1 ci ≤ B = n invalid;

(2) if xn+1 = 0, as Lemma 4.2, we know that by setting xi = 1 for 1 ≤ i ≤ n, the

highest JQ can be reached in this case. Thus to get the optimal X∗, it is required

14bounded by the logarithm of the numerical precision for the product of qualities in J, as the
formula of computing JQ(J, BV, α) in Equation 4.4 shows.

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 127

compare between F(X(1), W ′) = JQ(J, BV, α) and F(X(2), W ′) = K.

Then we have

(1) X∗ = X(1) ⇒ JQ(J, BV, α) ≥ K;

(2) X∗ = X(2) ⇒ K ≥ JQ(J, BV, α).

We know that given K ∈ [0, 1], α and J, verifying JQ(J, BV, α) ≥ K (or

K ≥ JQ(J, BV, α)) is NP-hard, thus we have proved that solving JSP is NP-

hard.

4.5.1 Heuristic Solution

To address the computational hardness issue, we use the simulated annealing

heuristic [105], which is a stochastic local search method for discrete optimiza-

tion problems. This method can escape local optima and is proved to be effec-

tive in solving a variety of computationally hard problems [28, 55, 228]. Note

that there are other heuristics such as iterative improvement and evolution al-

gorithms, however, we find that simulated annealing already works efficiently

and effectively in practice.

The simulated annealing heuristic mimics the cooling process of metals,

which converge to a final, “frozen” state. A temperature parameter T is used

and iteratively reduced until it is small enough. For a specific value of T, the

heuristic performs several local neighbourhood searches. There is an objective

value on each location, and let ∆ denote the difference in objective value be-

tween the searched location and the original location. For each local search, the

heuristic makes a decision whether to “move” to the new location or not based

on T and ∆:

1. if the move will not decrease the objective value (i.e., ∆ ≥ 0), then the

move is accepted;

2. if the move will decrease the objective value (i.e., ∆ < 0), the move is

accepted with probability exp(−∆
T), i.e., by sampling from a Boltzmann

128 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Algorithm 7 JSP (Chapter 4).
Input: W = {j1, j2, . . . , jN}, B, N
Output: Ĵ

1: T = 1.0; // initial temperature parameter
2: X = [x1 = 0, x2 = 0, . . . , xN = 0]; // all initialized as 0
3: Ĵ = ∅; // estimated optimal jury set J∗

4: M = 0; // the overall monetary incentive for selected workers
5: H = ∅; // the set containing indexes for selected workers
6: while T ≥ ε do
7: for i = 1 to N do
8: randomly pick an index r ∈ {1, 2, . . . , N};
9: if xr = 0 and M + cr ≤ B then

10: xr = 1; M = M + cr;
11: Ĵ = Ĵ ∪ {jr}; H = H ∪ {r};
12: else
13: X, M, Ĵ, H = Swap(X, M, Ĵ, H, r, B, N);
14: end if
15: end for
16: T = T/2; // cool the temperature
17: end while
18: return Ĵ;

distribution [112].

The reason for not immediately rejecting the move towards a worse location is

that it tries to avoid getting stuck in local optima. Intuitively, when T is large,

it is freer to move than at lower T. Moreover, a large ∆ restricts the move as it

increases the chances of finding a very bad case.

We can apply the simulated annealing heuristic to solve JSP in Algorithm 7

by assuming that each location is a jury set J ⊆ W and its objective value is

JQ(J, BV, α). What is important in simulated annealing is the design of local

search. Before introducing our design of local search, we first explain some

variables to keep in Algorithm 7: H is used to store the indexes of selected

workers, M is used to store their aggregated cost, and X = [x1, x2, . . . , xN] is

used to keep the current state of each worker (xi = 1 indicates that worker ji

is selected and 0 otherwise). Starting from an initial X, we iteratively decrease

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 129

T (step 14) until T is small enough (step 6). In each iteration, we perform N

local searches (steps 7-13), by randomly picking an index r out of the N worker

indexes. Based on the randomly picked xr, we either select the worker if adding

the worker does not violate the budget B (steps 9-11), or execute Swap, which is

described in Algorithm 8. The decision to swap is made based on different xr

values:

1. if xr = 0, a randomly picked worker k ∈ H is replaced with worker r if

the replacement does not violate the budget constraint and the move is

accepted based on ∆ and T;

2. if xr = 1, the algorithm performs similarly to the above case, and it re-

places worker r with a randomly picked worker k ∈ {1, 2, · · · , N}\H if

the budget constraint still satisfies and the move is accepted as above.

While the heuristic does not have any bound on the returned jury (Ĵ) versus

the optimal jury (J∗), we show in the experiments (Section 4.6) that it is close to

the optimal by way of comparing the real and estimated JQ (i.e., JQ(Ĵ, BV, α)

and JQ(J∗, BV, α)).

4.6 Experiments

In this section we present the experimental evaluation of JQ and JSP, both

on synthetic data and real data. For each dataset, we first evaluate the solution

to JSP first, and then give detailed analysis on the computation of JQ. The al-

gorithms were implemented in Python 2.7 and evaluated on a 16GB memory

machine with Windows 7 (64 bit).

130 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Algorithm 8 Swap (Chapter 4).

Input: X, M, Ĵ, H, r, B, N
Output: X, M, Ĵ, H

1: if xr = 0 then
2: randomly pick an index k ∈ H;
3: a = k ; b = r ; // store the index
4: else
5: randomly pick an index k ∈ {1, 2, . . . , N}\H;
6: a = r ; b = k ; // store the index
7: end if
8: if M− ca + cb ≤ B then
9: ∆ = EstimateJQ(Ĵ \ {ja} ∪ {jb})− EstimateJQ(Ĵ);

10: if ∆ ≥ 0 or random(0, 1) ≤ exp(−∆
T) then

11: xa = 0; xb = 1; M = M− ca + cb;
12: Ĵ = Ĵ \ {ja} ∪ {jb}; H = H\{a} ∪ {b};
13: end if
14: end if
15: return X, M, Ĵ, H

4.6.1 Synthetic Dataset

Setup

First, we describe our default settings for the experiments. Similar to the

settings in [33], we generate each worker ji’s quality qi and cost ci via Gaussian

distributions, i.e., qi ∼ N (µ, σ2) and ci ∼ N (µ̂, σ̂2). We also set parameters

following [33], i.e., µ = 0.7, σ2 = 0.05, µ̂ = 0.05 and σ̂2 = 0.2. By default,

B = 0.5, α = 0.5 and the number of candidate workers in W is N = 50. For

JSP (Algorithm 7), we set ε = 10−8; for JQ computation (Algorithm 4), we set

numBuckets = 50. To achieve statistical significance of our results, we repeat the

results 1,000 times and report the average values.

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 131

80%

85%

90%

95%

100%

 0.5 0.6 0.7 0.8 0.9 1

Ju
ry

 Q
u
al

it
y

µ

MVJS
OPTJS

(a) Varying µ

85%

90%

95%

100%

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ju
ry

 Q
u
al

it
y

Budget

MVJS
OPTJS

(b) Varying B

90%

92%

94%

96%

98%

100%

 10 20 30 40 50 60 70 80 90 100

Ju
ry

 Q
u
al

it
y

The Number of Candidate Workers (N)

MVJS
OPTJS

(c) Varying N

96%

98%

100%

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ju
ry

 Q
u
al

it
y

The Standard Deviation of Cost

MVJS
OPTJS

(d) Varying σ̂

Figure 4.8: End-to-End System Comparisons.

System Comparison

We first perform the comparison of JSP with previous works, in an end-

to-end system experiment. Cao et al. [33] is the only related algorithm we are

aware of, which solves JSP under the MV strategy in an efficient manner. For-

mally, it addresses JSP as argmaxJ∈C JQ(J, MV, 0.5). We denote their system as

MVJS (Majority Voting Jury Selection System) and our system (Figure 4.1) as

OPTJS (Optimal Jury Selection System). We compare the two systems by mea-

suring the JQ on the returned jury sets.

The results are presented in Figure 4.8. We first evaluate the performance

of the two systems by varying µ ∈ [0.5, 1] in Figure 4.8(a), which shows that

OPTJS always outperforms MVJS, and OPTJS is more robust with low-quality

132 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

workers. For example, when µ = 0.6, the JQ of OPTJS leads that of MVJS for 5%.

By fixing µ = 0.7, Figure 4.8(b)-(d) respectively vary B ∈ [0.1, 1], N ∈ [10, 100],

σ̂ ∈ [0.1, 1] and compare the performance of MVJS and OPTJS, which all show

that OPTJS consistently performs better than MVJS. In Figure 4.8(b), OPTJS on

average leads around 3% compared with MVJS for different B; in Figure 4.8(c),

OPTJS is better than MVJS, especially when the number of workers is limited

(say when n = 10, OPTJS leads MVJS for more than 6%); in Figure 4.8(d), com-

pared with MVJS, OPTJS is more robust with the change of σ̂.

In summary, OPTJS always outperforms MVJS and, moreover, it is more

robust with (1) lower-quality workers, (2) limited number of workers and (3)

different cost variances.

Evaluating OPTJS

Next, we test the approximation error of Algorithm 7 by fixing N = 11 and

varying B ∈ [0.05, 0.5]. Because of its NP-hardness, J∗ is obtained by enumer-

ating all feasible juries. We record the optimal JQ(J∗, BV, 0.5) and the returned

JQ(Ĵ, BV, 0.5) in Figure 4.9(a). It shows that the two curves almost coincide

with each other. As mentioned in Section 4.6.1, each point in the graph is aver-

aged over repeated experiments. Thus, we also give statistics of the difference

JQ(J∗, BV, 0.5) − JQ(Ĵ, BV, 0.5) on all the 10,000 experiments considering dif-

ferent B (B changes in [0.05, 0.5] with step size 0.05) in Table 4.3, which shows

that more than 90% of them have a difference less than 0.01% and the maximum

error is within 3%.

Our next experiment is to test the efficiency of Algorithm 7. We set B = 0.5

and vary N ∈ [100, 500]. The results are shown in Figure 4.9(b). We observe that

the running time increases linearly with N, and it is less that 2.5 seconds even

for high numbers of workers (N = 500). It is fairly acceptable in real situations

as the JSP can be done offline.

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 133

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5

Ju
ry

 Q
u
al

it
y

Budget

JQ for optimal Jury set J*
JQ for returned Jury set J’

(a) Approximation Error

 0

 0.5

 1

 1.5

 2

 2.5

 100 200 300 400 500

T
im

e
 (

in
 S

e
c
o
n
d
s)

The Number of Candidate Workers (N)

B=0.05
B=0.20
B=0.35
B=0.50

(b) Varying N

Figure 4.9: Evaluating Efficiency and Effectiveness of OPTJS.

Table 4.3: Statistics in Different Error Ranges.

% [0, 0.01] (0.01, 0.1] (0.1, 1] (1, 3] (3,+∞)

Counts 9301 231 408 60 0

JQ Computation

We now turn our attention to the computation of JQ, which is an essential

part of OPTJS. We denote here by n the jury size.

We first evaluate the optimality of BV with respect to JQ. Due to the fact

the computing JQ in general is NP-hard, we set n = 11 and evaluate JQ for

four different strategies: two deterministic ones (MV-Majority Voting, and BV-

Bayesian Voting), and two randomized ones (RBV-Random Ballot Voting15 and

RMV-Randomized Majority Voting). We vary µ ∈ [0.5, 1] and illustrate the re-

sulting JQ in Figure 4.10(a). It can be seen that the JQ for BV outperforms the

others. Moreover, unsurprisingly, all strategies have their worst performance

for µ = 0.5 as the workers are purely random in that case. But when µ = 0.5, BV

also performs robust (with JQ 93.3%), the reason is that other strategies are sen-

sitive to low-quality workers, while BV can wisely decides the result by lever-

aging the workers’ qualities. Finally, the randomized version of MV, i.e., RMV,

15RBV randomly returns 0 or 1 with 50%.

134 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

50%

60%

70%

80%

90%

100%

 0.5 0.6 0.7 0.8 0.9 1

Ju
ry

 Q
u
al

it
y

µ

MV
BV

RBV
RMV

(a) Varying µ

50%

60%

70%

80%

90%

100%

 1 2 3 4 5 6 7 8 9 10 11

Ju
ry

 Q
u
al

it
y

Jury Size (n)

MV
BV

RBV
RMV

(b) Varying n

Figure 4.10: JQ for Different Strategies.

performs not better than MV for µ ≥ 0.5, as randomized strategies may improve

the error bound in the worst case [123]. The JQ under RBV always keeps at 50%

since it is purely random.

To further evaluate the performance of different strategies for different jury

sizes, and for a fixed µ = 0.7, we vary n ∈ [1, 11] and plot the resulting qualities

in Figure 4.10(b). The results show that as n increases, the JQ for the two ran-

domized strategies stay the same and BV is the highest among all strategies. To

be specific, when n = 7, the BV is about 10% better than MV. In summary, BV

performs the best among all strategies.

Having compared the JQ between different strategies, we now focus on ad-

dressing the computation of JQ for BV, i.e., JQ(J, BV, 0.5) in Figure 4.11. We

first evaluate the effect of the quality variance σ2 with varying mean µ in Fig-

ure 4.11(a). It can be seen that JQ has the highest value for a high variance when

µ = 0.5. It’s because under a higher variance, worker qualities are more likely

to deviate from the mean (0.5), and so, it’s likely to have more high-quality

workers.

Then we address the effectiveness of Algorithm 4 for approximating the

real JQ. We first evaluate the approximation error in Figure 4.11(b) by varying

numBuckets ∈ [10, 200]. As can be seen, the approximation error drops sig-

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 135

75%

80%

85%

90%

95%

100%

 0.5 0.6 0.7 0.8 0.9 1

Ju
ry

 Q
u
al

it
y

µ

Variance=0.01
Variance=0.03
Variance=0.05
Variance=0.10

(a) Varying µ and σ2

0.000%

0.005%

0.010%

0.015%

0.020%

0.025%

0.030%

 50 100 150 200

A
p
p
ro

x
im

at
io

n
 E

rr
o
r

numBuckets

(b) Varying numBuckets

 0

 100

 200

 300

 400

 500

 600

 700

0.000% 0.002% 0.004% 0.006% 0.008% 0.010%

F
re

q
u
en

cy

Approximation Error

(c) Approximation Error

 0

 0.5

 1

 1.5

 2

 2.5

 100 150 200 250 300 350 400 450 500

T
im

e
(i

n
 S

ec
o
n
d

s)

Jury Size (n)

with pruning
without pruning

(d) Varying n

Figure 4.11: Evaluating JQ(J, BV, 0.5) Computation.

nificantly with numBuckets, and is very close to 0 if we have enough buckets.

In Figure 4.11(c) we plot the histogram of differences between the accurate JQ

and the approximated JQ (or JQ− ĴQ) over all repeated experiments by setting

numBuckets = 50. It is heavily skewed towards very low errors. In fact, the

maximal error is within 0.01%.

Finally, we evaluate the computational savings of the pruning techniques of

Algorithm 4 by varying the number of workers n ∈ [100, 500] in Figure 4.11(d).

The pruning technique is indeed effective, saving more than half the compu-

tational cost. Moreover, it can be seen that our method scales very well with

the number of workers. For example, when n = 500, the estimation of JQ runs

within 2.5s without pruning technique, while finishing within 1s facilitated by

our proposed pruning methods.

136 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

4.6.2 Real Dataset

Dataset Collection

We collected the real world data from the Amazon Mechanical Turk (AMT)

platform. AMT provides APIs and allows users to batch multiple questions

in Human Intelligence Tasks (HIT). Each worker is rewarded with a certain

amount of money upon completing a HIT. The API also allows to set the num-

ber of assignments (denoted m) to a HIT, guaranteeing it can be answered m

times by different workers. To generate the HITs, we use the public sentiment

analysis dataset16, which contains 5,152 tweets related to various companies.

We randomly select 600 tweets from them, and generate a HIT for each tweet,

which asks whether the sentiment of a tweet is positive or not (decision making

task). The ground truth of this question is provided by the dataset. The true

answers for yes and no is approximately equal, so we set the prior as α = 0.5.

To perform experiments on AMT, we randomly batch 20 questions in a HIT

and set m = 20 for each HIT, where each HIT is rewarded $0.02. After all HITs

are finished, we collect a dataset which contains 600 decision-making tasks, and

each task is answered by 20 different workers. We give several statistics on the

worker answering information. There are 128 workers in total, and each of them

has answered on average 600×20
128 = 93.75 questions. Only two workers have

answered all questions and 67 workers have answered only 20 questions. We

used these answers to compute every worker’s quality, which is defined as the

proportion of correctly answered questions by the worker in all her answered

questions. The average quality for all workers is 0.71. There are 40 workers

whose qualities are greater than 0.8, and about 10% whose quality is less than

the value 0.6.

16http://www.sananalytics.com/lab/twitter-sentiment/

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 137

93%

94%

95%

96%

97%

98%

99%

100%

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ju
ry

 Q
u
al

it
y

Budget

MVJS
OPTJS

(a) Varying B

75%

80%

85%

90%

95%

100%

 4 6 8 10 12 14 16 18 20

Ju
ry

 Q
u
al

it
y

The Number of Candidate Workers (N)

MVJS
OPTJS

(b) Varying N

93%

94%

95%

96%

97%

98%

99%

100%

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ju
ry

 Q
u
al

it
y

The Standard Deviation of Cost

MVJS
OPTJS

(c) Varying σ̂

70%

75%

80%

85%

90%

95%

100%

 3 6 9 12 15 18

A
cc

u
ra

cy
 /

 A
v
er

ag
e

JQ

The Number of Votings (z)

Accuracy
Average JQ

(d) Is JQ a good prediction?

Figure 4.12: Real Dataset Evaluation.

JSP

To evaluate JSP, for each question, we form the candidate workers set W

by collecting all 20 workers who answered the question, i.e., having N = |W| =
20. We follow the settings in experiments on synthetic data except that worker

qualities are computed using the real-world data. We then solve JSP for each

question by varying B ∈ [0.1, 1.0], N ∈ [3, 20] and σ̂ ∈ [0, 1]. We compute the

average returned JQ by solving JSP for all 600 questions, which is recorded as

a point in Figures 4.12(a)-(c), respectively. It can be seen that Figure 4.12(a)-(c)

has a similar results pattern as Figure 4.8(b)-(d), i.e., experimental results on the

synthetic datasets. Especially, OPTJS always outperforms MVJS in real-world

scenarios.

138 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Is JQ is a good prediction?

Finally, we try to evaluate whether JQ, defined in Definition 4.3, is a good

way to predict the quality for BV in reality. Notice that, after workers give their

votes, we can adopt BV to get the voting result, and then compare it with the

true answer of the question. And thus, the goodness of BV in reality can be

measured by the “accuracy”, which counts the proportion of correctly answered

questions according to BV.

We now test whether JQ is a good prediction of accuracy in reality. For each

question, we vary the number of votes (denoted as z). For a given z ∈ [0, 20],

based on the question’s answering sequence, we collect its first z votes, then

(i) for each question, knowing the first z workers who answered the question,

we can compute the JQ by considering these workers’ qualities. Then we take

the average of JQ among all 600 questions;

(ii) by considering the first z workers’ qualities who answered the question and

their votes, BV can decide the result of the question. After that, the accuracy can

be computed by comparing voting result and the true answer for each question.

Now given a z ∈ [3, 20], we compare the average JQ and accuracy in Fig-

ure 4.12(d), which shows that they are highly similar. Hence, it verifies that JQ

for BV is really a good prediction of accuracy for BV in reality.

4.7 Extensions to Various Task Types and Worker Models

In Section 4.4 we have outlined the algorithm for estimating JQ only for

decision making tasks in which only two answers are possible and the quality

of a worker is modeled as a constant parameter, encoding the probability of a

correct answer. But in real-world scenarios the task and worker model can be

more complex.

In the case of the task itself, a more natural way is to model the an-

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 139

swers as multiple choices, i.e., multiple labels. For example, sentiment analysis

tasks [127] have the objective of detecting the correct sentiment for a piece of

text (crawled from tweets) and the choices for each task are positive, neutral, and

negative. Here we assume that each task has ` possible answers/labels, denoted

as {0, 1, . . . , ` − 1} and it has only one true label t ∈ [0, ` − 1]. Note that for

the case that each task can have multiple true labels, we can follow [149], which

decomposes each task into ` decision making tasks, and publish these ` tasks to

workers.

In the case of worker quality model, it can be modeled by measuring the

sensitivity and specificity of each worker [215], and it can be generalized to be

modeled as a confusion matrix (CM) [92]. A confusion matrix C is a matrix of size

`× ` where each element Cjk encodes the probability that the worker gives label

k as an answer when the true label is j. An example CM with ` = 2 for a worker

is C =

0.7 0.3

0.2 0.8

. The CM quality model is a very general model of worker

quality, and it can also solve the case in [127], which models each worker as a

constant parameter q ∈ [0, 1] for multiple label tasks. Many studies [19, 92, 215]

have addressed how to derive CM from worker’s past answering history.

In this section, we extend our strategies and JQ computation algorithms to

the setting in which a task has a number of ` possible labels, where the prior is

a vector~α = {α0, α1, . . . , α`−1} s.t. ∑`−1
j=0 αj = 1, and the quality of each worker ji

is modeled as a confusion matrix C(i). We first prove the optimal strategy in Sec-

tion 4.7.1, and then extend the JQ and JSP respectively in Section 4.7.2 and 4.7.3.

4.7.1 Optimal Strategy Extension

To derive the optimal strategy for multiple-choice tasks, note that here S(·)
is a function which takes V (∈ Ω = {0, 1, . . . , ` − 1}n), jury set J (where each

worker ji is modeled as a CM C(i)) and prior ~α as input, the output is the es-

timated true answer S(V, J,~α) ∈ [0, ` − 1]. For simplicity we denote S(V) as

140 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

S(V, J,~α). Similar to Equation 4.4, here E[1{S(V)=t}] can be expressed as:

∑V∈Ω ∑`−1
t=0 Pr(t = t) · Pr(V | t = t) ·E[1{S(V)=t}]

=∑V∈Ω ∑`−1
t=0 αt ·

(
∏n

i=1 C(i)
t,vi

)
·E[1{S(V)=t}]

Similarly we can derive that the optimal strategy S∗(V) is

S∗(V) = argmax
t∈{0,1,...,`−1}

αt ·∏n
i=1 C(i)

t,vi
. (4.17)

Note that if multiple labels can reach the highest probability, we set S∗(V) as

the label with the lowest index among those labels. We can see this is a optimal

strategy by the following reasoning:

(1) if there exists a deterministic strategy S′ such that, for a specific V, it satisfies

S′(V) = m ∈ [0, `− 1] while

Pr(t = m) · Pr(V | t = m)

< max
t∈[0,`−1]

Pr(t = t) · Pr(V | t = t)

=Pr(t = S∗(V)) · Pr(V | t = S∗(V)),

then we can change the value of S′(V) to S′(V) = S∗(V), which increases the

JQ for the strategy S′;

(2) if there exists a randomized strategy S′ such that, for a specific V, it satisfies

S′(V) = S∗(V) with probability p < 1, then we can set S′(V) = S∗(V) with

probability 1 and S′(V) = m (where m 6= S∗(V)) with probability 0, then the

change will increase the JQ for the strategy S′.

Thus we can prove the optimal strategy S∗, which is the same as Bayesian

Voting strategy BV, or S∗ = BV.

4.7.2 JQ Computation Extension

Compared with Algorithm 4, the case of multiple label tasks where each

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 141

(a) t = 0, α0 = 1/3

(b) t = 1, α1 = 1/3

(c) t = 2, α2 = 1/3

Figure 4.13: Illustrating JQ Calculation for Different t and V.

142 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Algorithm 9 GetBucketSize (Chapter 4).
Input: J = {j1, j2, . . . , jn}, numBuckets, n, `,~α
Output: δ

1: upper = 0;
2: tmin = 1; tmax = 0;
3: for t = 0 to `− 1 do
4: if tmin > αt then tmin = αt;
5: if tmax < αt then tmax = αt;
6: end for
7: if upper < ln tmax

tmin then upper = ln tmax
tmin ; // prior

8: for i = 1 to n do
9: tmin = 1; tmax = 0;

10: for t = 0 to `− 1 do
11: for j = 0 to `− 1 do
12: if tmin > C(i)

t,j then tmin = C(i)
t,j ;

13: if tmax < C(i)
t,j then tmax = C(i)

t,j ;
14: end for
15: if upper < ln tmax

tmin then upper = ln tmax
tmin ; // CM

16: end for
17: end for
18: δ = upper

numBuckets ;
19: return δ

worker is modeled as a confusion matrix requires several adaptations. First let

us illustrate an example below.

Example 12. Take the example in Figure 4.13, where ` = 3,~α = {1/3, 1/3, 1/3},
J = {j1, j2}, and

C(1) =

0.7 0.2 0.1

0.1 0.8 0.1

0.1 0.3 0.6

 , C(2) =

0.4 0.3 0.3

0.2 0.6 0.2

0.2 0.1 0.7

 .

We have to enumerate `n = 32 = 9 different configurations of the possible votings

V ∈ {0, 1, 2}2 by varying different the true labels t ∈ {0, 1, 2} from Figure 4.13(a)-(c).

Take the voting V = {0, 1} as an example in Figure 4.13(a), which assumes t = 0. The

probability is Pr(V | t = 0) · Pr(t = 0) = C(1)
00 · C

(2)
01 · α0 = 0.07. By following the

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 143

optimal strategy outlined above, we should compare the probability α0 · Pr(V | t = 0),

α1 · Pr(V | t = 1), and α2 · Pr(V | t = 2). As shown in the fourth column of the label,

it returns label 0, since it corresponds to the highest probability. As S∗(V) = 0 = t, so

the probability 0.07 will be added to JQ.

Based on the example in Figure 4.13 illustrated above, dealing with mul-

tiple label task while modeling each worker as a CM is different from that in

Figure 4.2, which deals with decision making task and it models each worker as

a quality constant. We summarize two main challenges and our solutions in the

following:

(1) As in Figure 4.2, it models each worker a constant quality value, assuming in-

dependence between different labels, i.e., Pr(vi = 0 | t = 0) = Pr(vi = 1 | t = 1).

Different from Figure 4.2, in Figure 4.13 the CM models the dependency be-

tween the various possible labels, and because of the fact that we can not find

the correspondence between different tables in Figure 4.13, we should treat each

table (different t) respectively. So we perform ` iterations, where each iteration

consider a specific t ∈ [0, `− 1];

(2) as for each voting V, the BV should select

BV(V) = argmax
t∈[0,`−1]

αt · Pr(V | t = t),

which is the comparison between ` probabilities, thus rather than a constant

value, given a fixed t′ ∈ {0, 1, . . . , `− 1}, we keep an `-tuple

(
ln

Pr(V | t = t′) · αt′

Pr(V | t = 0) · α0
, . . . , ln

Pr(V | t = t′) · αt′

Pr(V | t = `− 1) · α`−1

)

as the key in the map structure, and the corresponding prob is the aggregated

probabilities of the same key. Then the prob can be added in ĴQ if all compo-

nents in the tuple are positive.

Algorithm 10 illustrates the JQ estimation for multiple-label tasks. As dis-

cussed above, we take ` iterations to consider each possible t respectively, where

144 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

Algorithm 10 EstimateGeneralJQ (Chapter 4).
Input: J = {j1, j2, . . . , jn}, numBuckets, n, `,~α
Output: ĴQ

1: δ = GetBucketSize(Q, numBuckets, n, `,~α);
2: ĴQ = 0;
3: for t = 0 to `− 1 do
4: SM = map();
5: key = (0, 0, . . . , 0); // initialize an `-tuple with all 0
6: for j = 0 to `− 1 do
7: key[j + 1] =

⌈
ln(αt/αj)

δ − 1
2

⌉
; // incorporate prior

8: end for
9: SM[key] = 1; // the key contains prior information

10: for i = 1 to n do
11: M = map(); // initialize an empty map structure
12: for (key, prob) ∈ SM do
13: for v = 0 to `− 1 do
14: newkey = key; // copy from key to newkey
15: for jj = 0 to `− 1 do

16: newkey[jj + 1]+ =

⌈
ln(C(i)

t,v /C(i)
jj,v)

δ − 1
2

⌉
;

17: end for
18: if newkey /∈ M then
19: M[newkey] = 0;
20: end if
21: M[newkey] = M[newkey] + prob · C(i)

t,v ;
22: end for
23: end for
24: SM = M;
25: end for
26: ĴQsub = 0;
27: for (key, prob) ∈ SM do
28: count = 0;
29: f lag =true;
30: for j = 0 to `− 1 do
31: if key[j + 1] < 0 then
32: f lag =false;
33: break;
34: else if key[j + 1] == 0 then
35: count = count + 1;
36: end if
37: end for
38: if f lag =true then
39: ĴQsub + = prob/count;
40: end if
41: end for
42: ĴQ = ĴQ + ĴQsub · αt; // prior
43: end for
44: return ĴQ;

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 145

for each t ∈ [0, `− 1], it first generates an initial tuple by incorporating the prior

information (step 5-8), and then iterates over the n workers. For each worker

ji, it generates a new map structure M based on stored map structure SM for

the previous iteration (dealing with worker ji−1). The way to form M (step 10-

19) is that for each (key, prob) pair in SM, it generates ` tuples (each tuple is of

size `) by considering different votes from worker ji, and for each possible vote,

it updates ` components in the newkey and updates prob in the corresponding

newkey (step 12-18). After all workers have been iterated, it starts to deal with

the map structure for the last iteration (step 20-31). The corresponding prob

value for the key is aggregated if all the elements in the tuple are positive. In the

case when there are multiple components with value 0 in the key, as only the

lowest label index will be returned (Section 4.7.1), so only 1/count of the prob

should be added (step 22-31).

The method GetBucketSize is tasked with computing the value of δ, by

considering the prior and the CM of each worker. An important parameter in

the computation of δ = upper
numBuckets , and the value upper is computed in Algo-

rithm 9, which is the same as follows:

max

 ln
maxt∈[0,`−1] αt

mint∈[0,`−1] αt
, max

i∈[1,n]
j∈[0,`−1]

ln
maxt∈[0,`−1] C(i)

t,j

mintt∈[0,`−1] C(i)
tt,j

 .

Note that as we can easily deal with the case where αt = 0 for some t ∈ [0, `− 1]

and C(i)
t,j = 0 for some i ∈ [1, n], t, j ∈ [0, `− 1], so we do not have to include

them in computing upper, which will result in overflow.

Algorithm complexity. Similar to the analysis in Algorithm 4, suppose

numBuckets = d · n. We know that each component in the key has at most

2dn2 + 1 possible values, and there are O(d` · n2`) possible tuples, making the

time complexity of Algorithm 10 to be O(` · d` · n2`+1) by considering ` itera-

tions for different t. Note that even though this is unfortunately exponential

in the number of labels (`), in real settings, however, the number of labels is a

146 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

small constant (as otherwise it might confuse the workers), so the algorithm is

still polynomial for all practical purposes. Moreover, solving JSP and comput-

ing JQ is usually and offline process, without stringent efficiency requirements.

4.7.3 JSP extension

In this section, we extend JSP to support for CM and multiple label tasks.

Recall that in Section 4.5 we first study two Lemmas (Lemma 4.2 and 4.3), which

provide some good properties of JQ, resulting in straightforward solution under

specific cost models, then we adapt Simulated Annealing Heuristic to deal with

more general cost model for JSP. In this section, we first similarly study whether

the two lemmas satisfy or not for more general task and worker models, and

then discuss how to solve the general JSP.

We first prove an extension for Lemma 4.3, that is, the monotonicity prop-

erty on jury size holds even for more general task and worker model:

Lemma 4.4 (Extensions for Lemma 4.2). Given ~α and J, JQ(J, BV,~α) ≤
JQ(J′, BV,~α) where J′ = J ∪ {jn+1}.

Proof. Similar to the proof in Lemma 4.2, based on the prior ~α =

{α0, α1 · · · α`−1}, for a specific V ∈ Ω, we denote

At(V) = αt · Pr(V | t = t) ·E[1{BV(V)=t}]

for t = 0, 1, . . . , `− 1, and based on Equation 4.17, we can prove that

∑`−1
t=0 At(V) = max

t∈[0,`−1]
{ αt · P(V | t = t) }. (4.18)

By adding a worker jn+1 with CM C(n+1) (size `× `), the voting V ∈ Ω becomes

` votes, where the j-th one is denoted as V(j) = { v(j)
0 , v(j)

1 , . . . , v(j)
n+1 } s.t. v(j)

i = vi

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 147

for i ∈ [1, n] and v(j)
n+1 = j. So Equation 4.18 becomes

∑`−1
j=0 ∑`−1

t=0 At(V(j))

=∑`−1
j=0 max

t∈[0,`−1]
{ αt · P(V(j) | t = t) }

=∑`−1
j=0 max

t∈[0,`−1]
{ αt · C(n+1)

t,j · P(V | t = t) }.

(4.19)

By denoting bt = αt · P(V|t = t) for t ∈ [0, ` − 1], if we can prove Equa-

tion 4.19 is not lower than Equation 4.18, i.e.,

∑`−1
j=0 max

t∈[0,`−1]
{ bt · C(n+1)

t,j } ≥ max
t∈[0,`−1]

{ bt }, (4.20)

then we can prove the theorem by considering all V ∈ Ω. The proof is straight-

forward, as for any t′ ∈ [0, `− 1], we can prove that

∑`−1
j=0 max

t∈[0,`−1]
{ bt · C(n+1)

t,j } ≥∑`−1
j=0 bt′ · C

(n+1)
t′,j = bt′ .

By extending to any t′ ∈ [0, ` − 1] , we can finally prove Equation 4.20, thus

proving the Lemma.

Lemma 4.4 tells us that even for more general task and worker model, the

principle “the more workers, the better JQ for BV ” still holds. Hence, we can select

all workers if each worker contributes voluntarily or the budget is enough to

select all workers (i.e., B ≥ ∑N
i=1 ci).

Even though the extension for Lemma 4.2 holds, the extension for

Lemma 4.3, i.e., detecting what kind of CM will contribute more to JQ remains

an open question. Previous research [92, 160] has addressed how to rank work-

ers (or to detect spammers in all workers) based on their associated Confusion

Matrices. The basic idea of [92, 160] is to see whether a worker’s vote is indica-

tive on the true label or not.

To implement the idea, [92] transforms the “hard” label by a worker to a

148 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

“soft” label distribution. To be precise, if a worker having CM C votes a label

j ∈ {0, 1, . . . , ` − 1}, then the soft label distribution (denoted as p(j)), which

encodes the probabilities of each label to be the true label can be derived by a

direct application of Bayes’ theorem [23], as follows:

p(j) =
[α0 · C0,j

∑`−1
t=0 αt · Ct,j

,
α1 · C1,j

∑`−1
t=0 αt · Ct,j

, . . . ,
α`−1 · C`−1,j

∑`−1
t=0 αt · Ct,j

]
.

Note that we use p(j)
k to visit the k-th component (i.e., αk−1·Ck−1,j

∑`−1
t=0 αt·Ct,j

) in the distri-

bution. The more concentrated this distribution p(j) is, the more indicative of

the true label based on the worker’s vote for label j is, the “better” the worker’s

vote for the label j is. Based on this intuition, [92] define a penalty function of a

distribution p(j), as

penalty(p(j)) = ∑`−1
u=0 ∑`−1

v=0 p(j)
u+1 · p

(j)
v+1 · 1{u 6=v},

and formally define each worker’s score by aggregating penalty(p(j)) for j ∈
[0, `− 1] by considering the prior~α:

score(~α, C) = −∑`−1
j=0 αj · penalty(p(j)). (4.21)

Based on the known ~α, we can rank the workers in decreasing order of their

respective score(~α, C), and for the case that each worker requires the same cost

(i.e., ci = cj = c for i, j ∈ [1, n]), we can heuristically select the first k workers

with highest score where k = min{
⌊ B

c

⌋
, N}.

The study in [160] does not consider the label priors and defines the penalty

function for a worker’s vote j by aggregating the square difference for pairwise

combination of the probabilities in C∗,j (which is the (j−1)-th column in C), i.e.,

diff (C, j) = ∑`−1
u=0 ∑`−1

v=u (Cu,j − Cv,j)
2,

CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM 149

and the score for a worker with CM C is defined by aggregating over all labels:

score(C) = ∑`−1
j=0 diff (C, j). (4.22)

Then for this heuristic, we can similarly select the top k workers with high-

est score if each worker’s cost is the same.

For more general cost models where each worker may require arbitrary

cost, we can easily generalize Algorithm 7 for the JSP extension, since it

calls the JQ estimation function as a black box, and we can simply replace

EstimateGeneralJQ with EstimateJQ in Algorithm 7.

4.8 Related Works

Since we have reviewed most of the related works of crowdsourcing in

Chapter 2, this section only highlights the part related to expert team formation.

In social network, several works [68, 113] studied the problem of expert

team formation, that is, given the aggregated skill requirements for a task, how

to find a team of experts with minimum cost (communication cost or individual

financial requirement), such that the skill requirements are satisfied. Rather

than the skill requirements in [68,113], we focus on the probability of drawing a

correct answer, which requires to enumerate exponential number of possibilities

and is indeed challenging. In fact we address the Jury Selection Problem, which

is firstly proposed by [33]. But we find that the solution is sub-optimal in [33],

which cannot leverage the known quality for workers. We formally address the

optimal JSP problem in the chapter. Some other works [54, 162] also talk about

how to wisely select sources for integration. The difference is that we assume

the workers are given a multiple-label task and the worker model is known,

while in their problem setting, the possible answers from different sources are

not restricted, and the sources’ exact real qualities are unknown in advance.

150 CHAPTER 4. OPTIMAL JURY SELECTION PROBLEM

4.9 Chapter Summary

In this chapter, we have studied the task assignment problem in the worker-

based setting, i.e., Jury Selection Problem (JSP). To be specific, we focus on

decision-making tasks, whose objective is to choose a subset of workers, such

that the probability of having a correct answer (or Jury Quality, JQ) is maxi-

mized. We approach this problem from an optimality perspective. As JQ is re-

lated to voting strategy, we prove that an existing strategy, called Bayesian Vot-

ing Strategy (BV) is optimal under the JQ. Although computing JQ under BV is

NP-hard, we give an efficient algorithm with theoretical guarantees. Moreover,

we incorporate the task provider prior information, and we show how to extend

JQ computation for different worker models and task types. Finally we evaluate

JSP under BV, we prove several properties which can be used for efficient JSP

computations under some constraints, and provide an approximate solution to

JSP by simulated annealing heuristics.

Having discussed the solutions to task assignment problem in the above

two chapters, in next chapter, we will study another important component in

crowdsourcing: truth inference. To be specific, we will study the truth inference

problem, i.e., how to aggregate the answers collected from workers and derive

the truth of each task.

151

Chapter 5

Analysis of Truth Inference

5.1 Introduction

Crowdsourcing solutions have been proposed to address tasks that are

hard for machines, e.g., entity resolution [30] and sentiment analysis [124]. Due

to the wide deployment of public crowdsourcing platforms, e.g., Amazon Me-

chanical Turk (AMT) [1], CrowdFlower [5], the access to crowd becomes much

easier. The database community has shown great interests in crowdsourcing

(see a survey [116]). Several crowdsourced databases (e.g., CrowdDB [70],

Deco [151], Qurk [137]) are built to incorporate the crowd into query process-

ing, and there are many studies on implementing crowdsourced operators, e.g.,

Join [35, 136, 192, 199], Max [80, 184], Top-k [46, 214], Group-by [46], etc.

Due to the openness of crowdsourcing, the crowd (called workers) may

yield low-quality or even noisy answers. Thus it is important to control the

quality in crowdsourcing. To address this problem, most of existing crowd-

sourcing studies employ a redundancy-based strategy, which assigns each task

to multiple workers and aggregates the answers given by different work-

ers to infer the correct answer (called truth) of each task. A fundamental

problem, called Truth Inference, is widely studied in existing crowdsourcing

152 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

works [21,32,47,48,63,100,104,118,119,126,127,131,161,182,197,200,226], which

decides how to effectively infer the truth for each task.

To address the problem, a straightforward approach is Majority Voting

(MV), which takes the answer given by majority workers as the truth. However,

the biggest limitation of MV is that it regards all workers as equal. In reality,

workers may have different levels of qualities: a high-quality worker carefully

answers tasks; a low-quality (or spammer) may randomly answer tasks in or-

der to deceive money; a malicious worker may even intentionally give wrong

answers. Thus it is important to capture each worker’s quality, which can better

infer the truth of each task by trusting more on the answers given by workers

with higher qualities.

However, the ground truth of each task is unknown and it is hard to esti-

mate a worker’s quality. To address this problem, one can label the ground truth

for a small portion of tasks (called golden tasks) and use them to estimate work-

ers’ quality. There are two types of methods to utilize golden tasks. The first is

qualification test. Each worker requires to perform a set of golden tasks before

she can really answer tasks, and her quality is computed based on her answer-

ing performance for these golden tasks. The second is hidden test. The golden

tasks are mixed into the tasks and the workers do not know which are golden

tasks. A worker’s quality is computed based on her answering performance

on these golden tasks. However, the two approaches have some limitations.

(1) For qualification test, workers require to answer these “extra” tasks without

pay, and many workers do not want to answer such tasks. (2) For hidden test,

it is a waste to pay the “extra” tasks. (3) The two techniques may not improve

the quality (see Section 5.6).

Considering these limitations, the database community [63,89,118,119,127,

131, 219] and data mining community [21, 47, 48, 100, 104, 126, 161, 182, 197, 200,

226] independently study this problem and propose various algorithms. How-

ever, these algorithms are not compared under the same experimental frame-

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 153

work and it is hard for practitioners to select appropriate algorithms. To alle-

viate this problem, we provide a comprehensive survey on existing truth infer-

ence algorithms. We summarize them in terms of task types, task modeling, worker

modeling, and inference techniques. We conduct a comprehensive comparison of

17 existing representative methods [21,47,48,100,104,118,119,126,161,182,197,

200, 226], experimentally compare them on 5 real datasets with varying sizes

and task types in real crowdsourcing platforms, make a deep analysis on the

experimental results, and provide extensive experimental findings.

To summarize, we make the following contributions:

•We survey 17 existing algorithms, summarize a framework (Section 5.3), and

provide an in-depth analysis and summary on the 17 algorithms in different

perspectives (Sections 5.4-5.5), which can help practitioners to easily grasp ex-

isting truth inference algorithms.

• We experimentally conduct a thorough comparison of these methods on 5

datasets with varying sizes, publicize our codes and datasets [157], and provide

experimental findings, which give guidance for selecting appropriate methods

under various scenarios (Section 5.6).

•We find that the truth inference problem is not fully solved, identify the limita-

tions of existing algorithms, and point out several promising research directions

(Section 5.7).

5.2 Problem Definition

Definition 5.1 (Task). A task set T contains n tasks, i.e., T = {t1, t2, . . . , tn}. For

each task, workers are asked to answer it.

Existing studies mainly focus on three types of tasks.

Decision-Making Tasks. A decision-making task has a claim and asks workers

to make a decision on whether the claim is true (denoted as ‘T’) or false (denoted

154 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

Table 5.1: An Example Product Dataset.
ID Product Name
r1 iPad Two 16GB WiFi White
r2 iPad 2nd generation 16GB WiFi White
r3 Apple iPhone 4 16GB White
r4 iPhone 4th generation White 16GB

Table 5.2: The Collected Workers’ Answers for All Tasks.
t1: t2: t3: t4: t5: t6:

(r1=r2) (r1=r3) (r1=r4) (r2=r3) (r2=r4) (r3=r4)
w1 F T T F F F
w2 F F T T F
w3 T F F F F T

as ‘F’). Decision-making tasks are widely used and studied in existing crowd-

sourcing works [47, 48, 100, 126, 200] because of its conceptual simplicity.

Next we take entity resolution as an example, which tries to find

pairs of products in Table 5.1 that refer to the same real-world entity.

A straightforward way is to generate a task set T = {(r1=r2), (r1=r3),

(r1=r4), (r2=r3), (r2=r4), (r3=r4)} with n = 6 decision-making tasks, where each

task has two choices: (true, false), and asks workers to select a choice for the task.

For example, t2 (or r1=r3) asks whether the claim ‘iPad Two 16GB WiFi White =

Apple iPhone 4 16GB White’ is true (‘T’) or false (‘F’). Tasks are then published to

crowdsourcing platforms (e.g., AMT [1]) and workers’ answers are collected.

Single-Choice (and Multiple-Choice) Tasks. A single-choice task contains

a question and a set of candidate choices, and asks workers to select a sin-

gle choice out of the candidate choices. For example, in sentiment analysis,

a task asks workers to select the sentiment (‘positive’, ‘neutral’, ‘negative’) of a

given tweet. Decision-making task is a special case of single-choice task, with

two special choices (‘T’ and ‘F’). The single-choice tasks are especially studied

in [21, 47, 48, 104, 118, 127, 131, 161, 182, 200, 226]. A direct extension of single-

choice task is multiple-choice task, where workers can select multiple choices

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 155

(not only a single choice) out of a set of candidate choices. For example, in

image tagging, given a set of candidate tags for an image, it asks workers to

select the tags that the image contains. However, as addressed in [149, 222], a

multi-label task can be easily transformed to a set of decision-making tasks, e.g.,

for an image tagging task (multi-label task), each transformed decision-making

task asks whether or not a tag is contained in an image. Thus the methods in

decision-making tasks can be directly extended to handle multiple-choice tasks.

Numeric Tasks. The numeric task asks workers to provide a value. For ex-

ample, a task asks about the height of Mount Everest. Different from the tasks

above, workers’ inputs are numeric values, which have inherent orderings (e.g.,

compared with 8800m, 8845m is closer to 8848m). Existing works [118, 161] es-

pecially study such tasks by considering the inherent orderings between values.

Others. Besides the above tasks, there are other types of tasks, e.g., translate

a language to another [32], or ask workers to collect data (e.g., the name of

a celebrity) [70, 190]. However, it is hard to control the quality for such “open”

tasks. Thus they are rarely studied in existing works [32,70,190]. In this chapter,

we focus only on the above three tasks and leave other tasks for future work.

Definition 5.2 (Worker). A worker setW contains a set of workers, i.e.,W = {w}.
Let W i denote the set of workers that have answered task ti and T w denote the set of

tasks that have been answered by worker w.
Definition 5.3 (Answer). Each task ti can be answered with a subset of workers in

W . Let vw
i denote the worker w’s answer for task ti, and the set of answers V = {vw

i }
contains the collected workers’ answers for all tasks.

Table 5.2 shows an example, with answers to T given by three workers

W = {w1, w2, w3}. (The empty cell means that the worker does not answer the

task.) For example, vw1
4 = F means worker w1 answers t4 (i.e., r2 = r3) with ‘F’,

i.e., w1 thinks that r2 6= r3. The set of workers that answer t1 isW1 = {w1, w3},
and the set of tasks answered by worker w2 is T w2 = {t2, t3, t4, t5, t6}.
Definition 5.4 (Truth). Each task ti has a true answer, called the ground truth (or

truth), denoted as v∗i .

156 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

Table 5.3: Notations Used in Chapter 5.
Notation Description

ti the i-th task (1 ≤ i ≤ n) and T = {t1, t2, . . . , tn}
w the worker w andW = {w} is the set of workers
W i the set of workers that have answered task ti

T w the set of tasks that have been answered by worker w
vw

i the answer given by worker w for task ti

V the set of workers’ answers for all tasks, i.e., V = {vw
i }

v∗i the (ground) truth for task ti (1 ≤ i ≤ n)

For the example task set T in Table 5.1, only pairs (r1= r2) and (r3= r4) are

true, and thus v∗1 = v∗6 = T, and others’ truth are F.

Based on the above notations, the truth inference problem is to infer the

(unknown) truth v∗i for each task ti based on V.

Definition 5.5 (Truth Inference in Crowdsourcing). Given workers’ answers V,

infer the truth v∗i of each task ti ∈ T .

Table 5.3 summarizes the notations used in the chapter.

5.3 Solution Framework

A naive solution is Majority Voting (MV) [70, 137, 151], which regards the

choice answered by majority workers as the truth. Based on Table 5.2, the truth

derived by MV is v∗i = F for 2 ≤ i ≤ 6 and it randomly infers v∗1 to break the

tie. The MV incorrectly infers v∗6 , and has 50% chance to infer v∗1 wrongly. The

reason is that MV assumes that each worker has the same quality, and in reality,

workers have different qualities: some are experts or ordinary workers, while

others are spammers (who randomly answer tasks in order to deceive money)

or even malicious workers (who intentionally give wrong answers). Take a

closer look at Table 5.2, we can observe that w3 has a higher quality, and the

reason is that if we do not consider t1 (which receives 1 ‘T’ and 1 ‘F’), then w3

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 157

gives 4 out of 5 answers that are reported by majority workers, while w1 and w2

give both 3 out of 5, thus we should give higher trust to w3’s answer and in this

way can infer all tasks’ truth correctly.

Based on the above discussions, existing works [21, 47, 48, 63, 100, 104, 118,

126,127,131,161,182,197,200,225,226] propose various ways to model a worker’s

quality. Although qualification test and hidden test can help to estimate a

worker’s quality, they require to label tasks with truth beforehand, and a worker

also requires to answer these “extra” tasks. To address this problem, existing

works [21,47,48,63,100,104,118,126,127,131,161,182,197,200,225,226] estimate

each worker’s quality purely based on workers’ answers V. Intuitively, they

capture the inherent relations between workers’ qualities and tasks’ truth: for a

task, the answer given by a high-quality worker is highly likely to be the truth;

conversely, for a worker, if the worker often correctly answers tasks, then the

worker will be assigned with a high quality. By capturing such relations, they

adopt an iterative approach, which jointly infers both the workers’ qualities and

tasks’ truth.

By capturing the above relations, the general approach adopted by most of

existing works [21,47,48,63,100,104,118,126,127,131,161,182,197,200,225,226]

is shown in Algorithm 11. The quality of each worker w ∈ W is denoted as

qw. In Algorithm 11, it first initializes workers’ qualities randomly or using

qualification test (line 1), and then adopts an iterative approach with two steps

(lines 4-16):

Step 1: Inferring the Truth (lines 4-5): it infers each task’s truth based on work-

ers’ answers and qualities. In this step, different task types are handled differ-

ently. Furthermore, some existing works [197, 200] explicitly model each task,

e.g., [200] regards that different tasks may have different difficulties. We discuss

how existing works model a task in Section 5.4.1.

Step 2: Estimating Worker Quality (lines 11-12): based on workers’ answers

and each task’s truth (derived from step 1), it estimates each worker’s quality.

158 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

In this step, existing works model each worker w’s quality qw differently. For

example, [21,48,100,126] model qw as a single value, while [47,104,126,161,182]

model qw as a matrix. We discuss worker’s models in Section 5.4.2.

Convergence (lines 15-16): the two iterations will run until convergence. Typi-

cally to identify convergence, existing works will check whether the change of

two sets of parameters (i.e., workers’ qualities and tasks’ truth) is below some

defined threshold (e.g., 10−3). Finally the inferred truth and workers’ qualities

are returned.

Running Example. Let us show how the method PM [21, 119] works for Ta-

ble 5.2. PM models each worker w as a single value qw ∈ [0,+∞) and a higher

value implies a higher quality. Initially, each worker w ∈ W is assigned with

the same quality qw = 1. Then the two steps devised in PM are as follows:

Step 1 (line 5): v∗i = argmaxv ∑w∈W i qw · 1{v=vw
i };

Step 2 (line 12): qw = − log
(∑ti∈T w 1{v∗i 6=vw

i }

maxw∈W{ ∑ti∈T w 1{v∗i 6=vw
i }
}
)
.

The indicator function 1{·} returns 1 if the statement is true; 0, otherwise.

For example, 1{5=3} = 0 and 1{5=5} = 1. For the 1st iteration, in step 1, it

computes each task’s truth from workers’ answers by considering which choice

receives the highest aggregated workers’ qualities. Intuitively, the answer given

by many high quality workers are likely to be the truth. For example, for task

t2, as it receives one T and two F’s from workers and each worker is of the same

quality, then v∗2 = F. Similarly we get v∗1 = T and v∗i = F for 2 ≤ i ≤ 6. In step 2,

based on the computed truth in step 1, it gives a high (low) quality to a worker

if the worker makes few (a lot of) mistakes. For example, as the number of

mistakes (i.e., ∑ti∈T w 1{v∗i 6=vw
i }) for workers w1, w2, w3 are 3, 2, 1, respectively,

thus the computed qualities are qw1 = − log(3/3) = 0, qw2 = − log(2/3) = 0.41

and qw3 = − log(1/3) = 1.10. Following these two steps, the process will then

iterate until convergence. In the converged results, the truth are v∗1 = v∗6 = T, and

v∗i = F (2 ≤ i ≤ 5); the qualities are qw1 = 4.9× 10−15, qw2 = 0.29 and qw3 = 16.09.

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 159

Algorithm 11 Solution Framework (Chapter 5).
Input: workers’ answers V
Output: inferred truth v∗i (1 ≤ i ≤ n), worker quality qw (w ∈ W)

1: Initialize all workers’ qualities (qw for w ∈ W);
2: while true do
3: // Step 1: Inferring the Truth
4: for 1 ≤ i ≤ n do
5: Inferring the truth v∗i based on V and {qw | w ∈ W};
6: end for
7: // Step 2: Estimating Worker Quality
8: for w ∈ W do
9: Estimating the quality qw based on V and {v∗i | 1 ≤ i ≤ n};

10: end for
11: // Check for Convergence
12: if Converged then
13: break;
14: end if
15: end while
16: return v∗i for 1 ≤ i ≤ n and qw for w ∈ W ;

We can observe that PM can derive the truth correctly, and w3 has a higher

quality compared with w1 and w2.

5.4 Important Factors

In this section, we categorize existing works [21, 47, 48, 63, 100, 104, 118, 126,

127, 131, 161, 182, 197, 200, 225, 226] following two factors:

Task Modeling (Section 5.4.1): how existing works model a task (e.g., task’s

difficulty, latent topics).

Worker Modeling (Section 5.4.2): how existing works model a worker’s quality

(e.g., worker probability, diverse skills).

We summarize how existing works [21, 47, 48, 63, 100, 104, 118, 126, 127, 131,

161, 182, 197, 200, 225, 226] can be categorized based on the above factors in Ta-

ble 5.4. Next we analyze each factor, respectively.

160 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

Table 5.4: Comparisons of Different Truth Inference Methods.
Method Task Types Task Modeling Worker Modeling Techniques

MV DM, SC No Model No Model Direct
Mean Numeric No Model No Model Direct
Median Numeric No Model No Model Direct
ZC [48] DM, SC No Model Worker Probability PGM

GLAD [200] DM, SC Task Difficulty Worker Probability PGM
D&S [47] DM, SC No Model Confusion Matrix PGM

Minimax [226] DM, SC No Model Diverse Skills Optimization
BCC [104] DM, SC No Model Confusion Matrix PGM
CBCC [182] DM, SC No Model Confusion Matrix PGM
LFC [161] DM, SC No Model Confusion Matrix PGM

CATD [118] DM, SC, Numeric No Model
Worker Probability

Optimization
Confidence

PM [21, 119] DM, SC, Numeric No Model Worker Probability Optimization

Multi [197] DM Latent Topics
Diverse Skills

PGMWorker Bias
Worker Variance

KOS [100] DM No Model Worker Probability PGM
VI-BP [126] DM No Model Confusion Matrix PGM
VI-MF [126] DM No Model Confusion Matrix PGM
LFC N [161] Numeric No Model Worker Variance PGM

Note: In the table, “DM” means “Decision-Making”, “SC” means “Single-Choice”.

5.4.1 Task Modeling

Task Difficulty

Different from most existing works which assume that a worker has the

same quality for answering different tasks, some recent works [131, 200] model

the difficulty in each task. They assume that each task has its difficulty level, and

the more difficult a task is, the harder a worker can correctly answer the task.

For example, in [200], it models the probability that worker w correctly answers

task ti as follows: Pr(vw
i = v∗i | di, qw) = 1/(1 + e−di ·qw

), where di ∈ (0,+∞)

represents the difficulty for task ti, and the higher di is, the easier task ti is.

Intuitively, for a fixed worker quality qw > 0, an easier task (high value of di)

leads to a higher probability that the worker correctly answers the task.

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 161

Latent Topics

Different from modeling each task as a value (e.g., difficulty), some recent

works [63,131,197,217] model each task as a vector with K values. The basic idea

is to exploit the diverse topics in a task, where the topic number (i.e., K) is pre-

defined. For example, existing studies [63, 131] make use of the text description

in each task and adopt topic model techniques [25, 216] to generate a vector of

size K for the task; while Multi [197] learns a K-size vector without referring

to external information (e.g., text descriptions). Based on the task models, a

worker is probable to answer a task correctly if the worker has high qualities on

the task’s related topics.

5.4.2 Worker Modeling

Worker Probability

Worker probability uses a single real number (between 0 and 1) to model

a worker w’s quality qw ∈ [0, 1], which represents the ability that worker w

correctly answers a task. The higher qw is, the worker w has higher abil-

ity to correctly answer tasks. The model has been widely used in existing

works [21, 48, 100, 126]. Some recent works [119, 200] extend the worker proba-

bility to model a worker’s quality in a wider range, e.g., qw ∈ (−∞,+∞), and a

higher qw means the worker w’s higher quality in answering tasks.

Confusion Matrix

Confusion matrix [47,104,126,161,182] is used to model a worker’s quality

for answering single-choice tasks. Suppose each task in T has ` fixed choices,

then the confusion matrix qw is an `× ` matrix, where the j-th (1 ≤ j ≤ `) row,

i.e., qw
j,· = [qw

j,1, qw
j,2, . . . , qw

j,`], represents the probability distribution of worker

w’s possible answers for a task if the truth of the task is the j-th choice. Each

162 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

element qw
j,k (1 ≤ j ≤ `, 1 ≤ k ≤ `) means that “given the truth of a task is

the j-th choice, the probability that worker w selects the k-th choice”, i.e., qw
j,k =

Pr(vw
i = k | v∗i = j) for any ti ∈ T . For example, decision-making tasks ask

workers to select ‘T’ (1st choice) or ‘F’ (2nd choice) for each claim (` = 2), then

an example confusion matrix for w is qw =

0.8 0.2

0.3 0.7

, where qw
1,2 = 0.2 means

that if the truth of a task is ‘T’, the probability that the worker answers the task

as ‘F’ is 0.2.

Worker Bias and Worker Variance

Worker bias and variance [161, 197] are proposed to handle numeric tasks,

where worker bias captures the effect that a worker may underestimate (or over-

estimate) the truth of a task, and worker variance captures the variation of errors

around the bias. For example, given a set of photos with humans, each numeric

task asks workers to estimate the height of the human on it. Suppose a worker w

is modeled with bias τw and variance σw, then the answer vw
i given by worker w

is modeled to draw from the Gaussian distribution: vw
i ∼ N (v∗i + τw, σw), that

is, (1) a worker with bias τw � 0 (τw � 0) will overestimate (underestimate)

the height, while τw → 0 leads to more accurate estimation; (2) a worker with

variance σw � 0 means a large variation of error, while σw → 0 leads to a small

variation of error.

Confidence

Existing works [98, 118] observe that if a worker answers plenty of tasks,

then the estimated quality for the worker is confident; otherwise, if a worker

answers only a few tasks, then the estimated quality is not confident. Inspired

by this observation, [131] assigns higher qualities to the workers who answer

plenty of tasks, than the workers who answer a few tasks. To be specific, for a

worker w, it uses the Chi-Square distribution [2] with 95% confidence interval,

i.e., X 2
(0.975,|T w|) as a coefficient to scale up the worker’s quality, where |T w| is the

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 163

number of tasks that worker w has answered. X 2
(0.975,|T w|) increases with |T w|,

i.e., the more tasks w has answered, the higher worker w’s quality is scaled to.

Diverse Skills

A worker may have various levels of expertise for different topics. For ex-

ample, a sports fan that rarely pays attention to entertainment may answer tasks

related to sports more correctly than tasks related to entertainment. Different

from most of the above models which have an assumption that a worker has the

same quality to answer different tasks, existing works [63, 131, 197, 217, 220, 226]

model the diverse skills in a worker and capture a worker’s diverse qualities for

different tasks. The basic ideas of [63,226] are that they model a worker w’s qual-

ity as a vector of size n, i.e., qw = [qw
1 , qw

2 , . . . , qw
n], where qw

i indicates worker w’s

quality for task ti. Different from [63,226], some recent works [131,197,217,220]

model a worker’s quality for different latent topics, i.e., qw = [qw
1 , qw

2 , . . . , qw
K],

where the number K is pre-defined, indicating the number of latent topics.

They [131, 197, 217, 220] assume that each task is related to one or more top-

ics in these K latent topics, and a worker is highly probable to correctly answer

a task if the worker has a high quality in the task’s related topics.

5.5 Truth Inference Algorithms

Existing works [21,47,48,63,100,104,118,126,127,131,161,182,197,200,226]

usually adopt the framework in Algorithm 11. Based on the used techniques,

they can be classified into the following three categories: direct computation [70,

151], optimization methods [21, 63, 118, 226] and probabilistic graphical model

methods [47,48,100,104,126,127,131,161,182,197,200]. Next we talk about them,

respectively.

164 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

5.5.1 Direct Computation

Some baseline methods directly estimate v∗i (1 ≤ i ≤ n) based on V, with-

out modeling each worker or task. For decision-making and single-label tasks,

Majority Voting (MV) regards the truth of each task as the answer given by most

workers; while for numeric tasks, Mean and Median are two baseline methods

that regard the mean and median of workers’ answers as the truth for each task.

5.5.2 Optimization

The basic idea of optimization methods is to set a self-defined optimization

function that captures the relations between workers’ qualities and tasks’ truth,

and then derive an iterative method to compute these two sets of parameters

collectively. The differences among existing works [21,118,119,226] are that they

model workers’ qualities differently and apply different optimization functions

to capture the relations between the two sets of parameters.

(1) Worker Probability. PM [21, 119] models each worker’s quality as a single

value, and the optimization function is defined as:

min
{qw},{v∗i }

f ({qw}, {v∗i }) = ∑
w∈W

qw · ∑
ti∈T w

d(vw
i , v∗i),

where {qw} represents the set of all workers’ qualities, and similarly {v∗i } rep-

resents the set of all truth. It models a worker w’s quality as qw ≥ 0, and

d(vw
i , v∗i) ≥ 0 defines the distance between worker’s answer vw

i and the truth

v∗i : the similar vw
i is to v∗i , the lower the value of d(vw

i , v∗i) is. Intuitively, to min-

imize f ({qw}, {v∗i }), a worker w’s high quality qw corresponds to a low value in

d(v∗i , vw
i), i.e., worker w’s answer should be close to the truth. By capturing the

intuitions, similar to Algorithm 11, PM [21,119] develops an iterative approach,

and in each iteration, it adopts the two steps as illustrated in Section 5.3.

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 165

(2) Worker Probability and Confidence. Different from above, CATD [118] con-

siders both worker probability and confidence in modeling a worker’s quality.

As discussed in Section 5.4.2, each worker w’s quality is scaled up to a coeffi-

cient of X 2
(0.975,|T w|), i.e., the more tasks w has answered, the higher worker w’s

quality is scaled to. It develops an objective function, with the intuitions that

a worker w who gives answers close to the truth and answers a plenty of tasks

should have a high quality qw. Similarly it adopts an iterative approach, and

iterates the two steps until convergence.

(3) Diverse Skills. Minimax [226] leverages the idea of minimax entropy [227].

To be specific, it models the diverse skills of a worker w across different tasks

and focuses on single-label tasks (with ` choices). It assumes that for a task

ti, the answers given by w are generated by a probability distribution πw
i,· =

[πw
i,1, πw

i,2, . . . , πw
i,`], where each πw

i,j is the probability that worker w answers

task ti with the j-th choice. Following this, an objective function is defined by

considering two constraints for tasks and workers: for a task ti, the number

of answers collected for a choice equals the sum of corresponding generated

probabilities; for a worker w, among all tasks answered by w, given the truth is

the j-th choice, the number of answers collected for the k-th choice equals the

sum of corresponding generated probabilities. Finally [226] devises an iterative

approach to infer the two sets of parameters {v∗i } and {πw}.

5.5.3 Probabilistic Graphical Model (PGM)

A probabilistic graphical model [107] is a graph which expresses the condi-

tional dependency structure (represented by edges) between random variables

(represented by nodes). Figure 5.1 shows the general PGM adopted in exist-

ing works. Each node represents a variable. There are two plates, respectively

for workers and tasks, where each one represents the repeating variables. For

example, the plate for workers represents |W| repeating variables, where each

variable corresponds to a worker w ∈ W . For the variables, α, β, and vw
i are

166 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

known (α and β are priors for qw and v∗i , which can be set based on the prior

knowledge); qw and v∗i are latent or unknown variables, which are two desired

variables to compute. The directed edges model the conditional dependence be-

tween a child node and its associated parent node(s) in the sense that the child

node follows a probabilistic distribution conditioned on the values taken by the

parent node(s). For example, three conditional distributions in Figure 5.1 are

Pr(qw | α), Pr(v∗i | β) and Pr(vw
i | qw, v∗i).

Next we illustrate the details (optimization goal and the two steps) of each

method using PGM. In general the methods differ in the used worker model.

It can be classified into three categories: worker probability [48, 100, 126, 200],

confusion matrix [47, 104, 161, 182] and diverse skills [63, 131, 197]. For each

category, we first introduce its basic method, e.g., ZC [48], and then summarize

how other methods [100, 126, 200] extend the basic method ZC [48].

(1) Worker Probability: ZC [48] and its extensions [100, 126, 200].

ZC [48] adopts a PGM similar to Figure 5.1, with the simplification that it

does not consider the priors (i.e., α, β). Suppose all tasks are decision-making

tasks (v∗i ∈ {T, F}) and each worker’s quality is modeled as worker probability

qw ∈ [0, 1]. Then

Pr(vw
i | qw, v∗i) = (qw)

1{vw
i =v∗i } · (1− qw)

1{vw
i 6=v∗i } ,

which means that the probability worker w correctly (incorrectly) answers a

task is qw (1 − qw). For decision-making tasks, ZC [48] tries to maximize

the probability of the occurrence of workers’ answers, called likelihood, i.e.,

max{qw} Pr(V | {qw}), which regards {v∗i } as latent variables:

Pr(V| {qw}) = 1
2
·∏n

i=1 ∑z∈{T, F}∏w∈W i Pr(vw
i | qw, v∗i = z). (5.1)

However, it is hard to optimize due to the non-convexity. Thus ZC [48] applies

the EM (Expectation-Maximization) framework [49] and iteratively updates qw

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 167

workers

tasks

v
i

w

α βq
w

v
i

*

|W |

n

Figure 5.1: The Probabilistic Graphical Model Framework.

and v∗i to approximate its optimal value. Note ZC [48] develops a system to

address entity linking for online pages. In this chapter we focus on the part of

leveraging the crowd’s answers to infer the truth (i.e., Section 4.3 in [48]), and

we omit other parts (e.g., constraints on its probabilistic model).

There are several extensions of ZC, e.g., GLAD [200], KOS [100], VI-BP [126],

VI-MF [126], and they focus on different perspectives:

Task Model. GLAD [200] extends ZC [48] in task model. Rather than as-

suming that each task is the same, it [200] models each task ti’s difficulty

di ∈ (0,+∞) (the higher, the easier). Then it models the worker’s answer as

Pr(vw
i = v∗i | di, qw) = 1/(1 + e−di ·qw

), and integrates it into Equation 5.1 to ap-

proximate the optimal value using Gradient Descent [107] (an iterative method).

Optimization Function. KOS [100], VI-BP [126], and VI-MF [126] extend ZC [48]

in an optimization goal. Recall that ZC tries to compute the optimal {qw} that

maximizes Pr(V | {qw}), which is the Point Estimate. Instead, [100,126] leverage

the Bayesian Estimators to calculate the integral of all possible qw, and the target

is to estimate the truth v∗i = argmaxz∈{T, F} Pr(v∗i = z | V), where

Pr(v∗i = z | V) =
∫
{qw}

Pr(v∗i = z, {qw} | V) d{qw}. (5.2)

168 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

It is hard to directly compute Equation 5.2, and existing works [100,126] seek for

Variational Inference (VI) techniques [191] to approximate the value: KOS [100]

first leverages Belief Propagation (one typical VI technique) to iteratively approx-

imate the value in Equation 5.2, then [126] proposes a more general model based

on KOS, called VI-BP. Moreover, it [126] also applies Mean Field (anther VI tech-

nique) in VI-MF to iteratively approach Equation 5.2.

(2) Confusion Matrix: D&S [47] and its extensions [104, 161, 182].

D&S [47] focuses on single-label tasks (with fixed ` choices) and models

each worker as a confusion matrix qw with size `× ` (Section 5.4.2). The worker

w’s answer follows the probability Pr(vw
i | qw, v∗i) = qw

v∗i ,vw
i
. Similar to Equa-

tion 5.1, D&S [47] tries to optimize the function argmax{qw} Pr(V | {qw}), where

Pr(V | {qw}) = ∏n
i=1 ∑1≤z≤` Pr(v∗i = z) ·∏w∈W i qw

z,vw
i
,

and it applies the EM framework [49] to devise two iterative steps.

The above method D&S [47], which models a worker as a confusion ma-

trix, is also a widely used model. There are some extensions, e.g., LFC [161],

LFC N [161], BCC [104] and CBCC [182].

Priors. LFC [161] extends D&S [47] to incorporate the priors into worker’s

model, by assuming that the priors, denoted as αw
j,k for 1 ≤ j, k ≤ ` are known in

advance, and the worker’s quality qw
j,k is generated following Beta(αw

j,k, ∑`
k=1 αw

j,k)

distribution.

Task Type. LFC N [161] also handles numeric tasks. Different from decision-

making and single-choice tasks, it assumes that worker w’s answer follows vw
i ∼

N (v∗i , σ2
w), where σw is the variance, and a small σw implies that vw

i is close to

truth v∗i .

Optimization Function. BCC [104] has a different optimization goal compared

with D&S [47] and it aims at maximizing the posterior joint probability. For ex-

ample, in Figure 5.1, it optimizes the posterior joint probability of all unknown

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 169

variables, i.e.,

∏n
i=1 Pr(v∗i | β)∏w∈W Pr(qw | α)∏n

i=1 ∏w∈W i Pr(vw
i | qw, v∗i).

To optimize the above formula, the technique of Gibbs Sampling [107] is used to

iteratively infer the two sets of parameters {qw}, {v∗i } until convergence, where

qw is modeled as a confusion matrix. Then CBCC [182] extends BCC [104] to sup-

port community. The basic idea is that each worker belongs to one community,

where each community has a representative confusion matrix, and workers in

the same community share very similar confusion matrices.

(3) Diverse Skills: Multi [197] and others [63, 131, 220].

Recently, there are some works (e.g., [63, 131, 197, 220]) that model a

worker’s diverse skills. Basically, they model a worker w’s quality qw as a vec-

tor of size K (Section 5.4.2), which captures a worker’s diverse skills over K

latent topics. For example, [131] combines the process of topic model (i.e., Twit-

terLDA [216]) and truth inference together, and [220] leverages entity linking

and knowledge base to exploit a worker’s diverse skills.

5.6 Experiments

In this section, we evaluate 17 existing methods (Table 5.4) on real datasets.

We first introduce the experimental setup (Section 5.6.1), and then analyze the

quality of collected crowdsourced data (Section 5.6.2). Finally we compare with

existing methods (Section 5.6.3). We have made all our used datasets and codes

available [157] for reproducibility and future research. We implement the ex-

periments in Python on a server with CPU 2.40GHz and 60GB memory.

170 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

Table 5.5: The Statistics of Each Dataset.
Dataset #tasks (n) #truth |V| |V|/n |W|

Datasets for Decision-Making Tasks
D Product [192] 8,315 8,315 24,945 3 176

D PosSent 1,000 1,000 20,000 20 85
Datasets for Single-Label Tasks

S Rel [31] 20,232 4,460 98,453 4.9 766
S Adult [11] 11,040 1,517 92,721 8.4 825

Datasets for Numeric Tasks
N Emotion [173] 700 700 7,000 10 38

5.6.1 Experimental Setup

Datasets

There are many public crowdsourcing datasets [43]. Among them, we se-

lect 5 representative datasets based on three criteria: (1) the dataset is large in

task size; (2) each task received multiple answers; (3) all datasets cover differ-

ent task types. In Table 5.5, for each selected dataset, we list four statistics: the

number of tasks, or #tasks (n), #collected answers (|V|), the average number of

answers for each task (|V|/n), #truth (some large datasets only provide a sub-

set as ground truth) and #workers (|W|). For example, for dataset D Product,

it contains 8,315 tasks, with 24,945 answers collected from 176 workers, and

each task is answered with 3 times on average. Next, we introduce the de-

tails of each dataset (with different task types). We manually collect answers

for D PosSent [180] from AMT [1]; while for other datasets, we use the public

datasets collected by other researchers [11, 31, 173, 192].

Decision-Making Tasks (start with prefix ‘D ’):

• D Product [192]. Each task in the dataset contains two products (with descrip-

tions) and two choices (T, F), and it asks workers to identify whether the claim

“the two products are the same” is true (‘T’) or false (‘F’). An example task is “Sony

Camera Carrying-LCSMX100 and Sony LCS-MX100 Camcorder are the same?”.

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 171

There are 8135 tasks, and 1101 (7034) tasks’ truth are T (F).

• D PosSent. Each task in the dataset contains a tweet related to a company (e.g.,

“The recent products of Apple is amazing!”), and asks workers to identify whether

the tweet has positive sentiment to that company. The workers give ‘yes’ or ‘no’

to each task. Based on the dataset [180], we create 1000 tasks. Among them,

528 (472) tasks’ truth are yes (no). In AMT [1], we batch 20 tasks in a Human

Intelligence Task (HIT) and assign each HIT to 20 workers. We pay each worker

$0.03 upon answering a HIT. We manually create qualification test by selecting

20 tasks, and each worker should answer the qualification test before she can

answer our tasks.

Single-Choice Tasks (start with prefix ‘S ’):

• S Rel [31]. Each task contains a topic and a document, and it asks workers

to choose the relevance of the topic w.r.t. the document by selecting one out of

four choices: ‘highly relevant’, ‘relevant’, ‘non-relevant’, and ‘broken link’.

• S Adult [11]. Each task contains a website, and it asks workers to identify

the adult level of the website by selecting one out of four choices: ‘G’ (General

Audience), ‘PG’ (Parental Guidance), ‘R’ (Restricted), and ‘X’ (Porn).

Numeric Tasks (start with prefix ‘N ’):

• N Emotion [173]. Each task in the dataset contains a text and a range

[−100, 100], and it asks each worker to select a score in the range, indicating

the degree of emotion (e.g., anger) of the text. A higher score means a higher

degree for the emotion.

Metrics

We use different metrics for different task types.

Decision-Making Tasks. We use Accuracy as the metric, which is defined as

the fraction of tasks whose truth are inferred correctly. Given a method, let v̂∗i
denote the inferred truth of task ti, then

172 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

Accuracy = ∑n
i=1 1{v̂∗i =v∗i }/n. (5.3)

However, for applications such as entity resolution (e.g., dataset D Product),

where the number of F is much larger than the number of T as truth (the pro-

portion of tasks with T and F as truth is 0.12:0.88 in D Product). In this case,

even a naive method that returns all tasks as F achieves very high Accuracy

(88%), which is not expected, as we care more for the same entities (i.e., choice

T) in entity resolution. Thus a typical metric F1-score is often used, which is

defined as the harmonic mean of Precision and Recall:

F1-score =
2

1
Precision + 1

Recall

=
2 ·∑n

i=1 1{v∗i =T} · 1{v̂∗i =T}

∑n
i=1(1{v∗i =T} + 1{v̂∗i =T})

. (5.4)

Single-Choice Tasks. We use the metric Accuracy (Equation 5.3).

Numeric Tasks. We use two metrics, MAE (Mean Absolute Error) and RMSE

(Root Mean Square Error), defined as below:

MAE =
∑n

i=1 |v∗i − v̂∗i |
n

, RMSE =

√
∑n

i=1(v∗i − v̂∗i)
2

n
, (5.5)

where RMSE gives a higher penalty for large errors.

Note that for the metrics Accuracy and F1-score, they are in [0, 1] and the

higher, the better; however, for MAE and RMSE (defined on errors), they are in

[0,+∞] and the lower, the better.

5.6.2 Crowdsourced Data Quality

In this section we first ask the following three questions related to the qual-

ity of crowdsourced data, and then answer them.

1. Are the crowdsourced data consistent? In other words, are the answers

from different workers the same for a task? (Section 5.6.2)

2. Are there a lot of redundant workers? In other words, does each worker

answer plenty of tasks? (Section 5.6.2)

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 173

3. Do workers provide high-quality data? In other words, are each worker’s

answers consistent with the truth? (Section 5.6.2)

Data Consistency

Decision-Making & Single-Label Tasks. Note that each task contains a fixed

number (denoted as `) of choices. For a task ti, let ni,j denote the number

of answers given to the j-th choice, e.g., in Table 5.2, for t2, n2,1 = 1 and

n2,2 = 2. In order to capture how concentrated the workers’ answers are,

we first compute the entropy [167] over the distribution of each task’s col-

lected answers, and then define data consistency (C) as the average entropy,

i.e., C = − 1
n ·∑

n
i=1 ∑`

j=1
ni,j

∑`
j=1 ni,j

· log`
ni,j

∑`
j=1 ni,j

. Note that we use “log`” other than

“ln” to ensure that the value C ∈ [0, 1], and the lower C is, the more consistent

workers’ answers are.

Based on V, we compute C for each dataset. The computed C of the four

datasets are 0.38, 0.85, 0.82, and 0.39, respectively. It can be seen that the crowd-

sourced data is not consistent. To be specific, for decision-making and single-

label datasets, C ≥ 0.38, and there exists highly inconsistent dataset D PosSent

with C = 0.85.

Numeric Tasks. As the answers obtained for each task has inherent orderings,

in order to capture the consistency of workers’ answers, for a task ti, we first

compute the median vi (a robust metric in statistics and it is not sensitive to

outliers) over all its collected answers; then the consistency (C) is defined as the

average deviation compared with the median, i.e., C = 1
n ·

n
∑

i=1

√
∑w∈W i (vw

i −vi)2

|W i | ,

whereW i is the set of workers that have answered ti. We have C ∈ [0,+∞], and

a lower C leads to more consistent answers.

For numeric dataset N Emotion, the computed C is 20.44.

Summary. The crowdsourced data is inconsistent, which motivates to develop

methods that can solve truth inference in crowdsourcing.

174 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

Worker Redundancy

For each worker, we define her redundancy as the number of tasks an-

swered by the worker. We record the redundancy of each worker in each

dataset, and then draw the histograms of worker redundancies in Figure 5.2.

Specifically, in each dataset, we vary the number of tasks (k), and record how

many workers that answer k tasks. We can see in Figure 5.2 that the worker

redundancy conforms to the long-tail phenomenon, i.e., most workers answer

a few tasks and only a few workers answer plenty of tasks.

Summary. The worker redundancy of crowdsourced data in real crowdsourc-

ing platforms conforms to long-tail phenomenon.

Worker Quality

In Figure 5.3, for each dataset, we show each worker’s quality, computed

based on comparing worker’s answers with tasks’ truth.

Decision-Making & Single-Label Tasks. We compute each worker w’s Ac-

curacy, i.e., the proportion of tasks that are correctly answered by w, i.e.,
∑ti∈T w 1{vw

i =v∗i }

|T w| ∈ [0, 1] and a higher value means a higher quality. For each

dataset, we compute the corresponding Accuracy for each worker and draw the

histograms of each worker. It can be seen from Figures 5.3(a)-(d) that histograms

of workers’ Accuracy are in different shapes for different datasets. To be specific,

workers for D Product and D PosSent are of high Accuracy, while workers have

mediate Accuracy for S Adult, and low Accuracy for S Rel. The average Accuracy

for all workers in each dataset are 0.79, 0.79, 0.53 and 0.65, respectively.

Numeric Tasks. It can be seen from Figure 5.3(e) that workers’ RMSE vary in

[20, 45], and the average RMSE is 28.9.

Summary. The workers’ qualities vary in the same dataset, which makes it

necessary to identify the trustworthy workers.

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 175

 0

 50

 100

 150

 200

0 1K 2K 3K

#
W

o
rk

e
rs

 t
h
a

t
A

n
s
w

e
r

k
 T

a
s
k
s

Number of Tasks (k)

(a) D Product (176 workers)

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000

#
W

o
rk

e
rs

 t
h
a

t
A

n
s
w

e
r

k
 T

a
s
k
s

Number of Tasks (k)

(b) D PosSent (85 workers)

 0

 200

 400

 600

 800

0 2K 4K 6K 8K

#
W

o
rk

e
rs

 t
h
a
t
A

n
s
w

e
r

k
 T

a
s
k
s

Number of Tasks (k)

(c) S Rel (766 workers)

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 3K 6K 9K

#
W

o
rk

e
rs

 t
h
a
t
A

n
s
w

e
r

k
 T

a
s
k
s

Number of Tasks (k)

(d) S Adult (825 workers)

 0

 10

 20

 30

 40

 0 100 200 300 400 500 600 700

#
W

o
rk

e
rs

 t
h
a
t
A

n
s
w

e
r

k
 T

a
s
k
s

Number of Tasks (k)

(e) N Emotion (38 workers)

Figure 5.2: The Statistics of Worker Redundancy for Each Dataset.

176 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

#
W

o
rk

e
rs

 t
h
a

t
H

a
v
e
 A

c
c
u
ra

c
y
 x

Accuracy (x)

(a) D Product (176 workers)

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1
#

W
o

rk
e
rs

 t
h
a

t
H

a
v
e
 A

c
c
u
ra

c
y
 x

Accuracy (x)

(b) D PosSent (85 workers)

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

#
W

o
rk

e
rs

 t
h
a

t
H

a
v
e
 A

c
c
u
ra

c
y
 x

Accuracy (x)

(c) S Rel (766 workers)

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

#
W

o
rk

e
rs

 t
h
a

t
H

a
v
e
 A

c
c
u
ra

c
y
 x

Accuracy (x)

(d) S Adult (825 workers)

 0

 5

 10

 15

 20

 0 10 20 30 40 50

#
W

o
rk

e
rs

 t
h
a
t
H

a
v
e
 R

M
S

E
 x

RMSE (x)

(e) N Emotion (38 workers)

Figure 5.3: The Statistics of Worker Quality for Each Dataset.

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 177

5.6.3 Crowdsourced Truth Inference

In this section we compare the performance of existing methods [21, 47, 48,

100,104,118,119,126,127,161,182,197,200,226]. Our comparisons are performed

based on the following perspectives:

1. What is the performance of different methods? In other words, if we only

know the workers’ answers (i.e., V), which method performs the best? Fur-

thermore, for a method, how does the truth inference quality change with more

workers’ answers? (Section 5.6.3)

2. What is the effect of qualification test? In other words, if we assume

a worker has performed some golden tasks before answering real tasks, and

initialize the worker’s quality (line 1 in Algorithm 11) based on the worker’s

answering performance for golden tasks, will this increase the quality of each

method? (Section 5.6.3)

3. What is the effect of hidden test? In other words, if we mix a set of golden

tasks in real tasks, then how much gain in truth inference can be benefited for

each method? (Section 5.6.3)

4. What are the effects of different task types, task models, worker models,

and inference techniques? In other words, what factors are beneficial to infer-

ring the truth? (Section 5.6.3)

Varying Data Redundancy

For data redundancy, we define it as the number of answers collected for

each task. In our 5 used datasets (Table 5.5), the data redundancy for each

dataset is |V|/n. In Figures 5.4, 5.5, and 5.6, we observe the quality of each

method in each dataset with varying data redundancy. For example, in Fig-

ure 5.4(a), on dataset D PosSent (with |V|/n = 3), we compare with 14 methods

that can be used in decision-making tasks (Table 5.4), i.e., MV, ZC, GLAD, D&S,

Minimax, BCC, CBCC, LFC, CATD, PM, Multi, KOS, VI-BP and VI-MF. We vary the

178 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

Table 5.6: The Comparison of Different Methods on Decision-Making Tasks.

Method
D Product D PosSent

Accuracy F1-score Time Accuracy F1-score Time
MV 89.66% 59.05% 0.13s 93.31% 92.85% 0.08s

ZC [48] 92.80% 63.59% 1.04s 95.10% 94.60% 0.55s
GLAD [200] 92.20% 60.17% 907.11s 95.20% 94.71% 407.66s
D&S [47] 93.66% 71.59% 1.46s 96.00% 95.66% 0.80s

Minimax [226] 84.09% 55.26% 272.05s 95.80% 95.43% 35.71s
BCC [104] 93.78% 70.10% 9.82s 96.00% 95.66% 6.06s
CBCC [182] 93.72% 70.87% 5.53s 96.00% 95.66% 4.12s
LFC [161] 93.73% 71.48% 1.42s 96.00% 95.66% 0.83s
CATD [118] 92.66% 65.92% 2.97s 95.50% 95.07% 1.32s
PM [21, 119] 89.81% 59.34% 0.56s 95.04% 94.53% 0.33s
Multi [197] 88.67% 58.32% 15.48s 95.70% 95.44% 4.98s
KOS [100] 89.55% 50.31% 24.06s 93.80% 93.06% 10.14s
VI-BP [126] 64.64% 37.43% 306.23s 96.00% 95.66% 58.52s
VI-MF [126] 83.91% 55.31% 38.96s 96.00% 95.66% 6.71s

data redundancy r ∈ [1, 3], where for each specific r, we randomly select r out

of 3 answers collected for each task, and construct a dataset with the selected

answers (i.e., a dataset with the number of answers r · n for all n tasks). Then

we run each method on the constructed dataset and record the Accuracy based

on comparing each method’s inferred truth with the ground truth. We repeat

each experiment for 30 times and the average quality is reported. As discussed

in Section 5.6.1, we use metrics Accuracy, F1-score on decision-making tasks

(D Product, D PosSent), metric Accuracy on single-label tasks (S Rel, S Adult)

and metrics MAE, RMSE on numeric tasks (N Emotion). To have a clear com-

parison, we record the quality and efficiency in the complete dataset (i.e., with

redundancy |V|/n) for all methods in Tables 5.6, 5.7 and 5.8. Based on the re-

sults in Figures 5.4-5.6, and Tables 5.6-5.8, we analyze the quality and efficiency

of different methods.

(1) The Quality of Different Methods in Different Datasets.

Decision-Making Tasks. For dataset D Product, i.e., Figures 5.4(a), (b), we can

observe that (1) as the data redundancy r is varied in [1, 3], the quality increases

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 179

Table 5.7: The Comparison of Different Methods on Single-Choice Tasks.

Method
S Rel S Adult

Accuracy Time Accuracy Time
MV 54.19% 0.49s 36.04% 0.40s

ZC [48] 48.21% 7.39s 35.34% 6.42s
GLAD [200] 53.59% 5850.39s 36.47% 4194.50s
D&S [47] 61.30% 10.67s 36.05% 9.18s

Minimax [226] 57.59% 1728.09s 36.03% 1223.75s
BCC [104] 60.72% 153.50s 36.34% 137.92s
CBCC [182] 56.05% 44.69s 36.28% 42.52s
LFC [161] 61.64% 10.75s 36.29% 9.26s
CATD [118] 45.32% 16.13s 36.23% 12.96s
PM [21, 119] 59.02% 2.60s 36.50% 2.09s

Table 5.8: The Comparison of Different Methods on Numeric Tasks.

Method
N Emotion

MAE RMSE Time
Mean 12.02 17.84 0.09s
Median 13.53 21.26 0.11s

CATD [118] 16.36 25.94 2.15s
PM [21, 119] 13.91 21.96 0.36s
LFC N [161] 12.20 18.97 0.23s

180 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

 50

 60

 70

 80

 90

 100

 1 2 3

A
c
c
u
ra

c
y
 (

%
)

Data Redundancy (r)

(a) D_Product (Accuracy)

 0

 20

 40

 60

 80

 1 2 3
F

1
-s

c
o

re
 (

%
)

Data Redundancy (r)

(b) D_Product (F1-score)

 50

 60

 70

 80

 90

 100

1 5 10 15 20

A
c
c
u

ra
c
y
 (

%
)

Data Redundancy (r)

(c) D_PosSent (Accuracy)

MV
ZC

GLAD

DS
Minimax

BCC

CBCC
LFC

CATD

PM
Multi
KOS

VI-BP
VI-MF

 50

 60

 70

 80

 90

 100

1 5 10 15 20

F
1

-s
c
o
re

 (
%

)

Data Redundancy (r)

(d) D_PosSent (F1-score)

Figure 5.4: Quality Comparisons on Decision-Making Tasks.

with r for different methods. (2) In Table 5.6, it can be observed that for Accuracy,

the quality does not make significant differences between methods (most meth-

ods’ quality are around 90%); while for F1-score, it makes differences, and only 4

methods’ quality (D&S, BCC, CBCC, LFC) are above 70%, leading more than 4%

compared with other methods. We have analyzed in Section 5.6.1 that F1-score

is more meaningful to D Product compared with Accuracy, as we are more inter-

ested in finding out the “same” products. (3) In terms of task models, incorpo-

rating task difficulty (GLAD) or latent topics (Minimax) do not bring significant

benefits in quality. (4) In terms of worker models, we can observe that the four

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 181

 30

 35

 40

 45

 50

 55

 60

 65

 1 2 3 4 5

A
c
c
u

ra
c
y
 (

%
)

Data Redundancy (r)

(a) S_Rel (Accuracy)

MV
ZC

GLAD
DS

Minimax
BCC

CBCC
LFC

CATD
PM

 30

 32

 34

 36

 38

 1 2 3 4 5 6 7 8 9

A
c
c
u

ra
c
y
 (

%
)

Data Redundancy (r)

(b) S_Adult (Accuracy)

Figure 5.5: Quality Comparisons on Single-Label Tasks.

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10

M
A

E

Data Redundancy (r)

(a) N_Emotion (MAE)

CATD PM LFC_N Mean Median

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

R
M

S
E

Data Redundancy (r)

(b) N_Emotion (RMSE)

Figure 5.6: Quality Comparisons on Numeric Tasks.

methods with confusion matrices (i.e., D&S, BCC, CBCC, LFC) perform signif-

icantly better than other methods with worker probability. The reason is that

confusion matrix models each worker as a 2× 2 matrix qw in decision-making

tasks, which captures both qw
1,1 = Pr(vw

i = T | v∗i = T), i.e., the probability that a

worker w answers correctly if the truth is T and qw
2,2 = Pr(vw

i = F | v∗i = F), i.e.,

the probability that w answers correctly if the truth is F. However, the worker

probability models a worker as a single value, which substantially assumes that

182 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

qw
1,1 = qw

2,2 in confusion matrix. This cannot fully capture a worker’s answering

performance. Note that in D Product, typically workers have high values for qw
2,2

and low values for qw
1,1. Since for a pair of different products, if one difference is

spotted between them, then it will be answered correctly, which is easy (qw
2,2 is

high); while for a pair of same products, it will be answered correctly only if all

the features in the products are spotted the same, which is hard (qw
1,1 is low). Al-

though VI-BP and VI-MF also use confusion matrix, they perform bad, probably

because they leverage Variational Inference to infer the parameters, which may

derive workers’ qualities wrongly. For other worker models such as worker

bias (Multi), worker variance (Multi, LFC N), diverse skills (Multi, Minimax) and

confidence (CATD), they do not outperform the confusion matrix methods in

quality, probably due to the fact that the methods cannot infer those parameters

correctly. (5) For BCC, the F1-score is 0 as r = 1, since BCC returns all tasks as F.

which gives no information to T. However, in Table 5.6 (with completed data),

the method BCC performs the best in Accuracy, while the method D&S performs

the best in F1-score.

For dataset D PosSent, i.e., Figures 5.4(c),(d), it can be observed that (1)

as r is varied in [1, 10], the quality increases significantly with r for different

methods (improving around 20%), and then have a minor increase ever since

(r ∈ [11, 20]). (2) Similar to D Product, the six methods with confusion ma-

trix as worker models (i.e., D&S, BCC, CBCC, LFC, VI-BP and VI-MF) perform

equally the best, since confusion matrix captures more information than worker

probability. However, other methods with more complicated task models and

worker models do not express their benefits in quality. (3) Accuracy and F1-score

in D PosSent do not have significant differences, since unlike D Product, the

#tasks with T and F as truth in D PosSent (i.e., 528 and 472) is balanced.

Single-Label Tasks. In Figure 5.5 and Table 5.7, on datasets S Rel and S Adult,

we compare with 10 methods that specifically address single-label tasks (Ta-

ble 5.4), i.e., MV, ZC, GLAD, D&S, Minimax, BCC, CBCC, LFC, CATD, and PM. We

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 183

have the following observations: (1) on S Rel, in general, the quality of methods

increase with r; while on S Adult, the quality of methods increase with r ∈ [1, 5],

and keep stable for r ≥ 5. (2) In terms of quality, on S Rel, the three methods

D&S, BCC and LFC with quality ≥ 60% outperform the other methods; while

on S Adult, the performance of different methods are similar. (3) On S Rel, the

quality of methods CATD and ZC decrease as r ≥ 4, probably because they are

sensitive to low quality workers’ answers. (4) The quality of methods for single-

label tasks are lower than that for decision-making tasks, since workers are not

good at answering tasks with multiple choices, and the methods for single-label

tasks are sensitive to low quality workers.

Numeric Tasks. In Figure 5.6 and Table 5.8, we compare with 5 methods that

specifically address numeric tasks (Table 5.4): CATD, PM, LFC N, Mean and Me-

dian. Note that MAE and RMSE are defined as errors, and the lower, the better.

We have the following observations: (1) generally the errors of almost all meth-

ods decrease with the increasing r. (2) Among all methods, the baseline method

Mean performs best, which regards each worker as equal. This means that work-

ers’ qualities may not be accurately inferred in CATD, PM and LFC N. (3) It can

be seen that the methods for numeric tasks are not well-addressed, as only 3

methods (i.e., CATD, PM, LFC N) are specifically devised for numeric tasks.

(2) The Efficiency of Different Methods.

In terms of efficiency, some methods (MV, Mean and Median) can infer the

truth directly, while other existing works (ZC, GLAD, D&S, Minimax, BCC, CBCC,

LFC, CATD, PM, Multi, KOS, VI-BP, VI-MF, LFC N) follow the iterative frame-

work (Algorithm 11) until convergence is attained. For the iterative methods,

the time complexity can be expressed as O(c · t), where c is the #iterations to

converge, and t is the time in each iteration. Thus a method is inefficient if

it takes many iterations to converge, or the time is slow in each iteration. We

record each method’s efficiency in Tables 5.6-5.8. We can observe that non-

iterative methods (MV, Mean and Median) are finished within 1s. For iterative

184 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

methods, (1) ZC, D&S, LFC,CATD, PM, LFC N can finish within 15s, which is

efficient. The reason is that they have a small c and t. (2) The methods BCC,

CBCC, Multi, KOS and VI-MF take more than 15s, but less than 3min to finish

the process. The reason is that for BCC, CBCC and VI-MF, they take many itera-

tions c to converge; while Multi and KOS take a long time t in each iteration. (3)

There are methods GLAD, Minimax and VI-BP that take up to 100min to finish,

which is slow. The reason is that they solve an optimization function in each

iteration, e.g., GLAD uses gradient descent [107], which will iteratively update

parameters in each iteration, and it will take a lot time (i.e., t).

Summary. We summarize based on the above results. (1) The quality increases

significantly with small data redundancy r, and keeps stable after a certain re-

dundancy r̂ > r. Note that r̂ varies in different methods on different datasets. (2)

There is no method that performs consistently the best on all tested datasets. (3)

In decision-making and single-label tasks, in general the three methods (D&S,

BCC, LFC) perform better than others with complete data (Tables 5.6-5.11). Note

D&S [47] is the most classical approach proposed in 1979, and all other methods

(BCC and LFC) extend D&S in different perspectives. (4) In numeric tasks, they

are not well-addressed in existing works, where the baseline method Mean per-

forms best in N Emotion. (5) In terms of task models, the methods that model

task difficulty (GLAD) or latent topics (Multi) in tasks do not perform signifi-

cantly better in quality; moreover, they often take more time to converge. (6)

In terms of worker models, generally speaking, confusion matrix performs bet-

ter in quality compared with worker probability; while other worker models

(e.g., diverse skills, worker bias, variance and confidence) do not bring signifi-

cant benefits. Not surprisingly, methods with complicated worker models often

lead to inefficiency. (7) In terms of inference techniques, for effectiveness, the

methods with Optimization and PGM are more effective than Direct Computa-

tion. For efficiency, Direct Computation is more efficient than Optimization and

PGM since it can compute the truth directly.

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 185

Table 5.9: The Benefit (∆) with Qualification Test on Decision-Making Tasks.

Method
D Product (Simulation) D PosSent (Real)

Accuracy (∆) F1-score (∆) Accuracy (∆) F1-score (∆)
ZC 92.95% (+0.15%) 64.4% (+0.81%) 95.10% (0.00%) 94.60% (0.00%)

GLAD 92.18% (–0.02%) 60.04% (–0.03%) 95.20% (0.00%) 94.71% (0.00%)
D&S 93.98% (+0.32%) 72.43% (+0.84%) 95.90% (–0.10%) 95.55% (–0.11%)
LFC 93.98% (+0.25%) 72.43% (+0.95%) 95.90% (–0.10%) 95.55% (–0.11%)
CATD 93.11% (+0.45%) 67.48% (+1.56%) 95.50% (+0.01%) 95.07% (+0.01%)
PM 90.55% (+0.74%) 61.26% (+1.92%) 95.10% (+0.05%) 94.60% (+0.06%)

VI-MF 85.26% (+1.35%) 57.31% (+2.00%) 95.90% (–0.10%) 95.54% (–0.12%)

Table 5.10: The Benefit (∆) with Qualification Test on Single-Label Tasks.

Method
S Rel (Simulation) S Adult (Simulation)

Accuracy (∆) Accuracy (∆)
ZC 55.24% (+7.03%) 35.54% (+0.20%)

GLAD 53.48% (–0.19%) 36.30% (+0.43%)
D&S 61.42% (+0.12%) 36.93% (+1.16%)
LFC 61.42% (+0.12%) 36.93% (+1.16%)
CATD 44.09% (–1.26%) 35.68% (–0.50%)
PM 59.41% (+0.39%) 36.70% (+0.41%)

Table 5.11: The Benefit (∆) with Qualification Test on Numeric Tasks.

Method
N Emotion (Simulation)
MAE (∆) RMSE (∆)

CATD 17.97 (+1.61) 28.56 (+2.62)
PM 17.27 (+3.36) 27.42 (+5.46)

LFC N 12.20 (0.00) 18.97 (0.00)

186 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

The Effect of Qualification Test

We next study how each method can be affected by qualification test. In

real crowdsourcing platforms (e.g., AMT [1]), a fixed set of golden tasks can

be set for each worker to answer when the worker first comes to answer tasks.

We collect dataset D PosSent from AMT [1], where each worker is required to

answer 20 tasks with known ground truth (qualification test) when she first

comes. However, in the other four public datasets, the data for qualification test

are not made public (or not used in most cases). Thus, (1) we first simulate each

worker’s answers for qualification test; (2) then use each worker’s answering

performance for them to initialize the worker’s quality (line 1 in Algorithm 11);

(3) finally we run each method with the initialized worker’s quality. For exam-

ple, in D Product, for each worker w, in her answers for all tasks (T w), we use

bootstrap sampling [60], i.e., sample with replacement to sample 20 times, where

each time we randomly sample her answer for one task (as there may be limited

answers for a worker, thus bootstrap sampling is used, which can uncover the

real distribution, i.e., worker’s quality). Then we assume the 20 tasks’ truth are

known, and use her answering performance to initialize her quality.

To leverage a worker’s answers for qualification test, for example, in

ZC [48], as each worker is modeled as worker probability, then her quality is

initialized as the fraction of correctly answered tasks in these 20 sampled ones.

Finally the two steps in ZC are iteratively run until convergence, and the qual-

ity w.r.t. ground truth is computed. We find that there are only 8 methods (i.e.,

ZC, GLAD, D&S, LFC, CATD, PM, VI-MF and LFC N) that can initialize workers’

qualities using qualification test. For these methods, we repeat each experiment

for 100 times. We denote c̃ as the average quality with qualification test; c as the

quality without qualification test (i.e., in Tables 5.6-5.8); and ∆ = c̃ − c as the

improvement of quality. Tables 5.9-5.11 show c̃ and ∆ of each method in each

dataset. Note that the only difference between c and c̃ is that they use different

initializations of workers’ qualities (line 1 in Algorithm 11).

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 187

Decision-Making & Single-Label Tasks. It can be observed that no matter in

real qualification test (D PosSent), or simulations (D Product, S Rel, S Adult),

not all methods can benefit from qualification test and the benefits vary in dif-

ferent datasets. For example, in D Product and S Adult, almost all methods

can benefit; while in D PosSent, only PM and CATD can benefit. The reason is

that in D Product, each task is only answered by 3 workers, while in D PosSent,

each task is answered by 20 workers. The dataset with small data redundancy

(e.g., D Product) requires qualification test for a good initialization of workers’

qualities, while other datasets can correctly detect each worker’s quality in an

unsupervised manner. We can also observe that the benefit (∆) is often small

and sometimes ∆ < 0, since almost all methods adopt an iterative approach

and approximate the objective value, thus an inadequate initialization may lead

to a bad local optimum.

Numeric Tasks. For dataset N Emotion, even no methods in CATD, PM and

LFC N can benefit, where both the errors MAE and RMSE increase for all meth-

ods. As mentioned before, this is probably because the methods are not studied

properly in the numeric data, and the qualities modeled for workers are not

accurate enough.

Summary. (1) Some methods can benefit from the qualification test with

marginal benefit. (2) In numeric tasks, most of methods cannot benefit, and

there is still room for improvement. (3) There are some methods that are hard

to incorporate qualification test.

The Effect of Hidden Test

We evaluate how hidden test affects each method’s quality. Given V, sup-

pose we also know the set of golden tasks T ′ ⊆ T , then how much quality can

be improved using existing methods? To implement this idea, we take a look at

existing methods (Table 5.4) and observe that there are 9 methods (ZC, GLAD,

D&S, Minimax, LFC, CATD, PM, VI-MF, and LFC N) that can be easily extended

188 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

 80

 85

 90

 95

0% 10% 20% 30% 40% 50%

A
c
c
u

ra
c
y
 (

%
)

Percentage of Known Truth (p%)

(a) D_Product (Accuracy)

ZC
GLAD

DS
Minimax

LFC
CATD

PM
VI-MF

 55

 60

 65

 70

 75

0% 10% 20% 30% 40% 50%

F
1

-s
c
o

re
 (

%
)

Percentage of Known Truth (p%)

(b) D_Product (F1-score)

 90

 92

 94

 96

 98

 100

0% 10% 20% 30% 40% 50%

A
c
c
u
ra

c
y
 (

%
)

Percentage of Known Truth (p%)

(c) D_PosSent (Accuracy)

 90

 92

 94

 96

 98

 100

0% 10% 20% 30% 40% 50%

F
1
-s

c
o

re
 (

%
)

Percentage of Known Truth (p%)

(d) D_PosSent (F1-score)

Figure 5.7: Varying Hidden Test on Decision-Making Tasks.

to incorporate the golden tasks into its iterative algorithm.

To incorporate the golden tasks, consider Algorithm 11, in step 1, we

only update the truth of tasks with unknown truth; in step 2, we update each

worker’s quality by considering both the truth of golden tasks and other tasks’

inferred truth in step 1. We show the quality of different methods by varying

the size of golden tasks (T ′) in Figures 5.7, 5.8 and 5.9. For example, in Fig-

ure 5.7(a), on dataset D Product, we randomly select p% in the task set T as

the golden tasks (T ′). Then we take T ′ and workers’ answers V as the input

to different methods, and further test different methods’ quality by comparing

the inferred truth of T − T ′ with their ground truth. We vary p ∈ [0, 50], where

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 189

 45

 50

 55

 60

 65

0% 10% 20% 30% 40% 50%

A
c
c
u
ra

c
y
 (

%
)

Percentage of Known Truth (p%)

(a) S_Rel (Accuracy)

ZC
GLAD

DS
Minimax

LFC
CATD

PM

 30

 32

 34

 36

 38

 40

0% 10% 20% 30% 40% 50%

A
c
c
u
ra

c
y
 (

%
)

Percentage of Known Truth (p%)

(b) S_Adult (Accuracy)

Figure 5.8: Varying Hidden Test on Single-Label Tasks.

 10

 12

 14

 16

 18

 20

0% 10% 20% 30% 40% 50%

M
A

E

Percentage of Known Truth (p%)

(a) N_Emotion (MAE)

CATD PM LFC_N

 15

 20

 25

 30

0% 10% 20% 30% 40% 50%

R
M

S
E

Percentage of Known Truth (p%)

(b) N_Emotion (RMSE)

Figure 5.9: Varying Hidden Test on Numeric Tasks.

for each p, we repeat each experiment 100 times and record the average quality.

Next, we analyze the results.

Decision-Making & Single-Label Tasks. In Figures 5.7 and 5.8, it can be seen

that (1) generally starting from p = 0 (Tables 5.6 and 5.10), the quality of meth-

ods increase with p, since knowing more truth is beneficial to more accurate

estimation. (2) The methods on dataset D PosSent do not have significant gains

with varying p, since each task is answered by multiple workers, and the in-

ferred parameters are hard to be affected by the known truth. (3) Only a few

methods (e.g., ZC, CATD) are sensitive to golden tasks, since most iterative

190 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

methods are easy to fall into local optimum.

Numeric Tasks. In Figure 5.9, we compare with three methods (LFC N, CATD,

PM) in N Emotion and we find that the errors (MAE and RMSE) decrease slightly

with the increasing p.

Summary. (1) Generally the quality of different methods increase with more

proportion (p%) of golden tasks. (2) Different methods have different improve-

ments on different datasets. (3) Only 9 methods are easy to incorporate golden

tasks in them.

Analyzing Different Factors in Truth Inference

Task Types. In terms of task types, we observe that the methods for decision-

making tasks have been studied a lot and already have very good performance.

Compared with decision-making tasks, the methods for single-label tasks do

not perform well, e.g., the qualities for S Rel and S Adult (Table 5.7) are much

lower than those for D Product and D PosSent (Table 5.6), since the methods for

single-label tasks are more sensitive to workers with low qualities. For numeric

tasks, the methods are not studied very well, and even the baseline method

Mean outperforms others in dataset N Emotion. This is because that on one

hand, few methods specifically study numeric tasks; on the other hand, most

methods cannot estimate workers’ qualities for numeric tasks accurately.

Task Models. In terms of task models, GLAD and Minimax are the only two

methods (Table 5.4) that consider specific task models (task difficulty and la-

tent topics, respectively). However, they do not show improvements in quality

compared with other methods with no task models. Moreover, they often take a

long time to converge (e.g., > 1000s in S Rel and S Adult). This is probably due

to that their inference methods are not robust, and in some cases they cannot

estimate the parameters in task models accurately. The incorporation of task

models also leads to inefficiency.

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 191

Worker Models. In terms of worker models, in general, methods with confu-

sion matrix (D&S, BCC, CBCC, LFC, VI-BP, VI-MF) perform better than methods

with worker probability (ZC, GLAD, CATD, PM, KOS), since confusion matrix is

more expressive than worker probability. Note that the quality of methods also

vary a lot even if they apply the same worker model, e.g., for confusion matrix,

the methods D&S, BCC, LFC are more robust than others (CBCC, VI-BP, VI-MF),

since their techniques can infer workers’ qualities more accurately. For other

worker models, e.g., worker bias (Multi), worker variance (Multi, LFC N), di-

verse skills (Multi, Minimax) and confidence (CATD), they do not achieve higher

gains in quality. We also observe that not necessarily “the more complex the model

is, the higher quality the method will achieve”. For example, although Multi con-

siders diverse skills, worker bias and variance in its worker models, the quality

does not bring significant benefits. Ideally more complicated worker models

lead to much higher quality; however, this introduces more computational com-

plexity, and on one hand, it is challenging to estimate a large set of parameters

accurately; on the other hand, it is hard to converge. Thus most methods with

complicated worker models fail to achieve very good performance in quality

and efficiency.

Inference Techniques. We analyze the techniques from quality, efficiency and

interpretability, respectively. (1) In terms of quality, the methods with Optimiza-

tion and PGM are more effective than the methods with Direct Computation, as

they consider more parameters and study how to infer them iteratively. (2)

In terms of efficiency, methods with Optimization and PGM are less efficient

than methods with Direct Computation. Different optimization functions often

vary significantly in efficiency, e.g., Bayesian Estimator is less efficient than Point

Estimation, and some techniques (e.g., Gibbs Sampling, Variational Inference) often

take a long time to converge. (3) In terms of interpretability, Optimization is eas-

ier to understand. The reason is that people can interpret the relations between

worker’s quality and task’s truth in the self-defined optimization function. For

PGM, it should conform to the model (Figure 5.1), which gives less freedom to

192 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

express the optimization function. Moreover, it is hard to devise an easily solv-

able optimization function, and the developed iterative algorithms often lead to

local optimum (e.g., Expectation Maximization [47, 49]).

Suggestions

Based on the experimental results, we have the following suggestions.

Decision-Making & Single-Label Tasks. If one has sufficient workers’ answers

(e.g., with redundancy over 20), and wants a very simple implementation that

attains reasonable results, then we recommend the baseline method, i.e., MV; if

one wants an implementation with little overhead but attains very good results,

then we recommend the classical method D&S [47], which is robust in practice;

if one would like to try some extensions of D&S, then BCC [104] and LFC [161]

are good choices; if one wants to learn more inference techniques and incorpo-

rate various task/worker models, we recommend the PGM method Multi [197]

and the Optimization method Minimax [226].

Numeric Tasks. If one has sufficient workers’ answers, we recommend the

baseline method (i.e., Mean); if one wants to learn more advanced techniques

and worker models, we recommend the PGM method LFC N [161], and the Op-

timization method CATD [118].

5.7 Chapter Summary

We provide a detailed survey on truth inference problem in crowdsourc-

ing and perform an in-depth analysis of 17 existing methods. We summarize a

framework (Algorithm 11) and analyze the task types, task models, worker models

and inference techniques in these methods. We also conduct sufficient experi-

ments to compare these methods on various datasets with varying task types

and sizes.

CHAPTER 5. ANALYSIS OF TRUTH INFERENCE 193

In the above three chapters, we have focused on studying the techniques

in task assignment and truth inference components. In the next two chapters,

we will study how to combine the techniques and benefit the real-world ap-

plications, i.e., question answering application and image tagging application,

respectively. On one side, directly applying the techniques to these applications

are not satisfactory. For example, in question answering application, each task

may be related to various domains and each worker may have diverse qualities

over different domains. The traditional techniques in task assignment and truth

inference that omitted such factors may not work well in practice. On the other

side, the existing methods and principles in task assignment and truth inference

will inspire us in designing intuitive solutions in real-world applications.

194 CHAPTER 5. ANALYSIS OF TRUTH INFERENCE

195

Chapter 6

A Multi-Label Task

Crowdsourcing System

6.1 Introduction

Crowdsourcing solutions have been proposed to solve problems that are

hard for computers (e.g., sentiment analysis [127, 222], entity resolution [192,

199]). Consider a sentiment analysis problem: a product company, e.g., Ama-

zon, collects many reviews from users on its products, and it aims to know

users’ sentiments about the reviews. Existing algorithms often cannot compute

sentiments accurately [125]. Crowdsourcing solutions can be used, where for

each review, we generate a task and ask the crowd to label the sentiment (e.g.,

selecting a label from “positive”, “neutral” or “negative”).

Existing crowdsourcing studies [92, 127, 199, 211, 222] focus mainly on

single-label tasks, which require workers to select a single label (or choice), e.g.,

select one label from {positive, neutral, negative} in a sentiment analysis task.

However, an object can have multiple labels. For example, in image tagging

application, an image in Figure 6.1 has tree, sky, and mountain as labels. More-

over, for movie tagging, a movie Matrix can be labeled with action and sci-fi;

196 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

Select all labels in the above image.

SUBMIT

tree

sky

people

lake

beach

sun

building

flower

mountain

boat

Figure 6.1: An Example Multi-Label Task.

similarly, a person Barack Obama can be labeled with a president, lawyer, and

politician. Although we can transform a multi-label task to several single-label

tasks, this simple approach can generate many tasks, incurring a high cost and

latency. For example, the multi-label task in Figure 6.1 is transformed to 10

single-label tasks, where each task inquiries about whether or not the image

contains a certain label (e.g., tree). As reported in [51], compared with single-

label tasks, multi-label tasks enable six times of improvement in terms of human

computation time, without sacrificing much quality.

Although some recent works [29, 56, 145, 147, 149, 198] focus on solving

multi-label tasks in crowdsourcing, however, this problem is not well ad-

dressed. Workers may have different characteristics in multi-label tasks: a con-

servative worker would only select labels that the worker is certain of, while

a venturous worker may select more labels. In order to determine the multi-

label tasks’ results, the key is to devise the so-called “worker model” to accu-

rately express the behavior of the worker in answering multi-labels. Then

we can identify the most trustworthy workers based on their models and put

trust in their answers. However, existing works [29, 56, 145, 147, 149, 198] sim-

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 197

ply adapt the worker models in modeling workers’ behaviors for single-label

tasks [48, 92, 127, 149, 211, 222], which are not suitable in our scenario. In a

multi-label task, there can be multiple labels for the worker. Consider the case

where there are 20 labels, and only four of them are correct (i.e., the remain-

ing 16 labels are wrong). A “bad” worker may select none of the correct labels,

and instead submit a few (say two) wrong labels. Under the true negative rate

(TNR) [92, 149, 222], his quality score is (16− 2)/16 = 87.5%. But the extremely

high score of this worker cannot reflect his poor performance! The consequence

is that we may be misled to believe in a bad answer. As we will explain, none of

the existing worker models are suitable for multi-label tasks.

Furthermore, different from single-label tasks, the inherent correlations

among labels exist in multi-label tasks. For example, in the 10 labels of Fig-

ure 6.1, consider one pairwise label dependency: if an image has label sun, then

it is highly probable that it also has label sky. Similar correlations also hold for

labels boat and lake. Label correlations can be regarded as prior information,

which can be learned from existing machine learning works [24, 210, 213]. The

label correlations can be used to improve the inference quality.

To address these limitations, in this chapter we perform a comprehensive

investigation for the multi-label tasks. We develop a system called Comet (with

its framework in Figure 6.2), where task publisher(s) can deploy multi-label

tasks on our system. Comet interacts with crowdsourcing platforms, e.g., Ama-

zon Mechanical Turk (AMT) [1], from which it collects workers’ answers, stores

them in database and conducts inference. It can also wisely select tasks to as-

sign upon a worker’s request. In summary, there are two kinds of requests from

workers that need to be handled by Comet: (1) when a worker submits answers

to Comet; (2) when a worker comes and requests tasks. We develop two compo-

nents in Comet that process these two requests, respectively:

• Truth Inference. When a worker submit answers, the component infers the

truth (or correct labels) of each task based on all workers’ answers. Comet uses

198 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

Comet

Crowdsourcing Platforms (e.g., AMT)

Online Task

Assignment

tasks

Task Publisher(s)

Truth

Inference

assigned

tasks

new

answers

workers’ answers

inference results

label correlations

2 3

4

4

1

2

3

4

inference results

tasks

Database

1 2

Figure 6.2: The Comet Framework.

a novel worker model, which can capture workers’ diverse characteristics in an-

swering multi-label tasks. As the truth of each task is unknown, each worker’s

model can only be estimated based on the collected answers. Comet conducts

truth inference in an iterative approach, which can jointly infer all tasks’ truth

and workers’ models with the following principle: a worker that selects correct

labels often will be considered to have a higher quality; meanwhile, a label that

is selected by high quality workers for a task is likely to be a correct label for

the task. We also study how to speed-up the computation by designing an in-

cremental approach. Comet leverages the known label correlations to improve

the truth inference, by integrating them into the inference method.

• Online Task Assignment. When a worker requests tasks, the component

targets at instantly assigning k tasks to the worker. A poor assignment may not

only waste the budget and time, but also spoil the overall quality. Comet first

measures the uncertainty of each task based on the collected answers, and then

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 199

estimates how much uncertainty can be reduced if the task is really answered

by the worker. Finally the k tasks with the highest reduction in uncertainty will

be assigned. As the worker’s answer to the task is unknown, to compute its

reduction in uncertainty, all possible answers given by the worker should be

considered, which is exponential (e.g., 2` answers for ` labels). Moreover, to

select k tasks (say, out of n tasks), we have to consider all (n
k) combinations. To

reduce the computational complexity, we prove a theorem, which computes the

optimal assignment in linear time.

To summarize, our contributions are:

• We perform a comprehensive study on crowdsourcing multi-label tasks, by

addressing two fundamental problems: Truth Inference Problem and (Online) Task

Assignment Problem (Section 6.2).

• For the first problem, we propose an effective worker model (Section 6.3), and

devise a method that jointly infers each task’s truth and each worker’s model

(Section 6.4). We further consider how to integrate label correlations into our

method (Section 6.5);

• For the second problem, we develop an effective algorithm that judiciously

selects k tasks with the largest amount of uncertainty reduction for the current

worker, in linear time (Section 6.6);

• We develop Comet, and use two real-world datasets to perform experiments

on two crowdsourcing platforms (AMT [1] and ChinaCrowd [3]). Results show

that Comet outperforms existing state-of-the-art methods, and is robust under

various scenarios. It achieves over 20% improvements on the two datasets per-

formed by low-quality workers. We also conduct experiments on simulated

data, in order to verify the scalability of Comet (Section 6.7).

For an overview of the chapter, we define two problems: Truth Inference

Problem and Task Assignment Problem in Section 6.2. Then we address the two

problems in Sections 6.3-6.5 and Section 6.6, respectively. We perform experi-

200 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

Table 6.1: An Example of Objects and Candidate Label Sets.

object o1= o2=

candidate L1={tree, sky, people, L2={tree, sky, people,
label set lake, beach, sun, building, lake, beach, sun, building,

flower, mountain, boat} flower, mountain, boat}
correct labels {tree, sky, mountain} {sky, lake, sun, boat}

ments in Section 6.7, and review related works in Section 6.8. Finally, we con-

clude in Section 6.9.

6.2 The Multi-Label Problem

6.2.1 Data Model

Definition 6.1 (Object, Candidate Label Set). Given n objects, o1, o2, · · · , on, where

each object oi has a candidate label set Li={`i,1, `i,2, . . . , `i,|Li |}, our target is to select

the correct labels of each object oi from its candidate label set Li.

For example, Table 6.1 shows two objects o1, o2 and their corresponding

candidate label sets L1 and L2. Note that there are several options to generate

candidate labels: (1) they can be collected from user data, e.g., user image tags

in Flickr [8]; (2) we can leverage existing computer vision system (e.g., Con-

vNet [4]), where given an image, it can estimate the probability of each label

being the correct label among a large set of labels, and we can keep the labels

with high probabilities as our candidate labels. The correct labels for o1 and o2

are {tree, sky, mountain} and {sky, lake, sun, boat}, respectively. (Note that

the correct labels are shown for illustration.) To effectively obtain the correct

labels of each object, we resort to crowdsourcing, by asking workers to select

labels of each object from its candidate label set.

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 201

Table 6.2: Workers’ Answers for Objects.
object worker answer

o1 w1 {sky}
o1 w2 {tree, sky, people, mountain}
o1 w3 {tree, flower}
o1 w4 {tree, sky, flower, mountain}
o2 w1 {sky, boat}
o2 w2 {sky, beach, sun}
o2 w3 {lake, sun, building}

Table 6.3: Truth and Votes for All (Object, Label) Pairs.
(object, label) truth all workers’ votes

(o1, `1,1) t1,1 = Y vw1
1,1 = N, vw2

1,1 = Y, vw3
1,1 = Y, vw4

1,1 = Y
(o1, `1,2) t1,2 = Y vw1

1,2 = Y, vw2
1,2 = Y, vw3

1,2 = N, vw4
1,2 = Y

· · · · · · · · ·
(o1, `1,10) t1,10 = N vw1

1,10 = N, vw2
1,10 = N, vw3

1,10 = N, vw4
1,10 = N

(o2, `2,1) t2,1 = N vw1
2,1 = N, vw2

2,1 = N, vw3
2,1 = N

· · · · · · · · ·
(o2, `2,10) t2,10 = Y vw1

2,10 = Y, vw2
2,10 = N, vw3

2,10 = N

Definition 6.2 (Task, Worker, Answer). A task contains an object oi and its can-

didate label set Li, and it asks the workers to select correct labels for oi from Li. (As

there exists a 1-to-1 correspondence between tasks and objects, we use task and object

interchangeably.) Let T = {(o1, L1), (o2, L2), . . . , (on, Ln)} denote the set of tasks.

To tolerate errors from the workers, each task can be answered by multiple workers. We

denoteW as the set of all workers, and Wi as a set of workers that answer object oi.

Example 13. Based on Table 6.1, we can generate two tasks T = {(o1, L1), (o2, L2)}.
We show the first task in Figure 6.1, which contains an image (o1) and a set of 10 labels

(L1). Workers will identify which labels the image has, by ticking ‘X’ to the correspond-

ing labels. Table 6.2 shows workers’ answers, where each row represents a worker’s

selected labels (or answer) for an object. For example, the first row indicates that worker

w1 only selects {sky} for o1. We can see that o1 is answered by all 4 workers, and o2

202 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

is answered by 3 workers. ThusW = {w1, w2, w3, w4}, W1 = {w1, w2, w3, w4}, and

W2 = {w1, w2, w3}.

Next, for each pair (oi, `i,j), we define its collected answers (called votes)

from workers and its ground truth (called truth).

Definition 6.3 (Vote, Truth). For a pair (oi, `i,j) (1 ≤ i ≤ n, 1 ≤ j ≤ |Li|), a vote

vw
i,j = Y/N represents whether or not worker w selects label `i,j for oi. To be specific,

vw
i,j = Y (N) means that worker w selects (does not select) label `i,j for object oi. For

a pair (oi, `i,j) (1 ≤ i ≤ n, 1 ≤ j ≤ |Li|), we denote its truth as ti,j = Y/N, which

represents whether or not label `i,j is a correct label for object oi, i.e., ti,j = Y (N) means

that label `i,j is (not) a correct label for object oi.

Example 14. Consider the two tasks in Table 6.1 and workers’ answers in Table 6.2,

we generate a new Table 6.3, which lists the truth and votes for all (oi, `i,j) pairs where

1 ≤ i ≤ n and 1 ≤ j ≤ |Li|. In each row, for a given pair (oi, `i,j), we get its truth

ti,j from Table 6.1 and all its votes from Table 6.2. To make it simple, we adopt the label

sequence of L1 (L2) as Table 6.1, i.e., `1,1 = tree, `1,2 = sky, . . . , `1,10 = boat. For

example, for the pair (o1, `1,2): its truth t1,2 = Y, which means that label sky (`1,2)

is a correct label for o1; it gets 4 votes from workers, e.g., vw3
1,2 = N, which means that

worker w3 does not select sky (`1,2) for o1.

6.2.2 Problem Definition

We now define the problems. The first important problem is to infer the

truth (or correct labels of each object) based on workers’ answers.

Definition 6.4 (Truth Inference Problem). Given all

workers’ votes, i.e., vw
i,j for 1 ≤ i ≤ n, 1 ≤ j ≤ |Li|, w ∈ Wi, infer the truth of each

(oi, `i,j) pair, i.e., ti,j for 1 ≤ i ≤ n, 1 ≤ j ≤ |Li|.

To address this problem, we first propose a worker model to quantify a

worker’s quality on a task (Section 6.3), and then devise an inference method

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 203

Table 6.4: Notations Used in Chapter 6.
Notation Description

oi the i-th object (1 ≤ i ≤ n)
Li {`i,1, `i,2, . . . , `i,|Li |}, or the candidate label set w.r.t. oi

T {(o1, L1), (o2, L2), . . . , (on, Ln)}, or the set of tasks
W a set of workers that have answered tasks
Wi a set of workers that have answered oi

vw
i,j Y (N) means worker w labels (does not label) `i,j for oi

ti,j Y (N) means `i,j is (not) a correct label for oi

pw, rw worker w’s model, or the Precision, Recall for worker w
Vi,j a set of votes for the pair (oi, `i,j)

V {Vi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ |Li|}, or the vote set
qi,j Pr(ti,j = Y | V), or the (probabilistic) truth of (oi, `i,j)

Dw a set of votes given by worker w
m m = ∑n

i=1 |Li|, or the number of all (oi, `i,j) pairs

to infer the truth of each task based on the worker model (Section 6.4). We dis-

cuss how to utilize the label correlation to further improve the inference quality

(Section 6.5).

The second problem studies how to judiciously select appropriate tasks to

assign for the coming worker.

Definition 6.5 (Task Assignment Problem). Given all

workers’ answers for objects collected so far, when a worker comes, which k objects

should be assigned to the coming worker?

We propose an effective algorithm that selects k tasks for each worker in

linear time (Section 6.6).

Table 6.4 summarizes the notations used in the chapter.

204 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

Table 6.5: Contingency Table of A Worker.
t = Y t = N

v = Y
True Positives False Positives

(TP) (FP)

v = N
False Negatives True Negatives

(FN) (TN)

6.3 Worker Modeling

In this section, we first revisit different worker models (Section 6.3.1), and

then point out the limitations of models used in existing works and propose our

selection (Section 6.3.2).

To evaluate a worker’s model (or quality), we should know the truth for all

(object, label) pairs that the worker’s votes. So in this section we assume that

all truth have been known, and compare different ways of modeling a worker.

In the next section (Section 6.4) we show how to compute each worker’s model

without knowing the truth.

6.3.1 Worker Models Revisited

For each worker, based on all (object, label) pairs that the worker votes, and

their truth, we can generate a contingency table for the worker in Table 6.5. In

the table, v represents the given votes and t represents their truth, and both can

be obtained from Table 6.3. Then for each worker, based on Table 6.3, we can

compute four statistics: True Positives (TP), False Positives (FP), False Negatives

(FN) and True Negatives (TN). E.g., TP of a worker is the number of (object,

label) pairs that the worker votes Y and the truth is Y.

Example 15. We show how to compute the contingency table for worker w3 based on

Table 6.3. As worker w3 has answered 2 objects, by giving votes Y for 5 pairs and votes

N for 15 pairs. So TP+FP=5 and FN+TN=15. Among the five Y votes: tree, flower

for o1, and lake, sun, building for o2 (i.e., vw3
1,1 = vw3

1,8 = vw3
2,4 = vw3

2,6 = vw3
2,7 = Y),

the truth of 3 labels are Y (i.e., t1,1 = t2,4 = t2,6 = Y), thus TP=3, FP=2. Similarly we

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 205

Table 6.6: Each Worker’s Contingency Table.
TP FP FN TN

w1 3 0 4 13
w2 5 2 2 11
w3 3 2 4 11
w4 3 1 0 6

Table 6.7: Workers’ Qualities.
Accuracy Precision Recall TNR

w1 80% 100% 43% 100%
w2 80% 71% 71% 85%
w3 70% 60% 43% 85%
w4 90% 75% 100% 86%

can get FN=4 and TN=11 for worker w3. We list all four workers’ contingency-table

values in Table 6.6. Note that as worker w4 only answers o1, so its contingency table is

computed based on worker w4’s votes for o1.

Based on the contingency table for a worker, there are several derivative

parameters to model a worker’s quality: Accuracy, Precision, Recall and True Neg-

ative Rate (TNR), defined as follows:

• Accuracy: It is the probability that the worker’s vote to an (object, label)

pair is right: Pr(t = v) = TP+TN
TP+FP+FN+TN .

• Precision. It is the probability that the worker’s vote Y to an (object, label)

pair is right (i.e., its truth is Y): Pr(t = Y | v = Y) = TP
TP+FP .

• Recall. It is the probability that an (object, label) pair with truth Y is

rightly voted by the worker (i.e., the worker’s vote is Y): Pr(v = Y | t = Y) =

TP
TP+FN .

• True Negative Rate (TNR). It is the probability that an (object, label) pair

with truth N is rightly voted by the worker (i.e., the worker’s vote is N): Pr(v =

N | t = N) = TN
TN+FP .

206 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

Based on a worker’s contingency table in Table 6.6, the worker’s different

quality parameters can be derived in Table 6.7. For these parameters, exist-

ing works [92, 127, 149, 211, 219, 222] either use only one or a combination of

them to model a worker’s quality: Accuracy is used in [127, 211, 219] to model

a worker’s quality, while [92, 149, 222] use a combination of TNR and Recall to

model a worker’s quality. In the following section (Section 6.3.2), we first show

the limitations of Accuracy and TNR used in existing works, and then propose

our novel way of modeling a worker (i.e., Precision and Recall).

6.3.2 Selecting Worker Model

Limitations of Accuracy and TNR. The limitation of only using Accuracy to

model a worker in [127,211,219] is that a single parameter cannot fully express a

worker’s characteristics. For example, in Table 6.2 we know that three workers

answer o2, and label boat gets one Y vote from w1 and two N votes from w2,

w3. Consider the three workers’ Accuracy in Table 6.7, as w1 and w2 (with the

same Accuracy) give contradictory votes, while w3 (with Accuracy 70%) votes N,

so label boat will be decided as not in o2 if we only consider Accuracy of each

worker.

Some works [92, 149, 222] model a worker’s quality with two parameters:

TNR and Recall. The limitation of TNR is that it is not expressive of workers

in answering multi-label tasks, because TNR =TN/(TN+FP), and in multi-label

tasks, the incorrect labels are large in size and sparsely distributed in semantics.

Then the crowd workers will not select most of them, making TN much larger

compared with FP (Table 6.6), resulting in a high value for TNR. As can be seen

in Table 6.7, the TNR for all workers are very high (≥ 85%), and the TNR of three

workers (w2, w3, and w4) are very close, making it hard to distinguish between

different workers.

More observations can be found in Figure 6.3, which shows the histograms

of 141 workers’ respective qualities collected from real-world datasets in crowd-

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 207

 0

 30

 60

 90

0% 20% 40% 60% 80% 100%

N
u
m

b
e
r

o
f
W

o
rk

e
rs

Precision

(a) Histogram of Precision

 0

 30

 60

 90

0% 20% 40% 60% 80% 100%

N
u
m

b
e
r

o
f
W

o
rk

e
rs

Recall

(b) Histogram of Recall

 0

 30

 60

 90

0% 20% 40% 60% 80% 100%

N
u
m

b
e
r

o
f
W

o
rk

e
rs

True Negative Rate (TNR)

(c) Histogram of True Negative Rate (TNR)

 0

 30

 60

 90

0% 20% 40% 60% 80% 100%

N
u
m

b
e
r

o
f
W

o
rk

e
rs

Accuracy

(d) Histogram of Accuracy

Figure 6.3: Histograms of Workers’ Respective Qualities.

sourcing platforms (Section 6.7). In each figure, x-axis indicates respective qual-

ity value, and y-axis indicates the number of workers (in 141 ones) that fall in

different ranges of quality values. It can be seen that the Accuracy and TNR are

highly concentrated in high values and of a low spread, while Precision and Re-

call are of a wider spread and can capture the differences between workers. The

reason is that Accuracy and TNR are related to TN, which dominates other three

statistics: TP, FP and FN (also shown in Table 6.6); while Precision and Recall,

two parameters unrelated to TN are more expressive in modeling a worker.

Our Selection: Precision and Recall. Based on the above analysis, we model the

quality of a worker using two parameters: Precision and Recall, and the combi-

nation has not been considered in existing crowdsourcing works. Specifically, a

worker with high Precision (e.g., w1) means that the labels selected by the worker

is likely to be correct (e.g., label boat for o2); a worker with high Recall (e.g., w4)

means that the correct labels are mostly selected by the worker, which substan-

tially indicates that a label not selected by the worker is unlikely to be correct.

208 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

Moreover, a conservative worker would only select labels that the worker is

certain of, yielding high Precision but low Recall (such as w1); on the other hand,

a venturous worker may select more labels, resulting in low Precision but high

Recall (such as w4).

6.4 Iterative Truth Inference

This section studies the Truth Inference Problem, i.e., inferring the truth based

on all workers’ votes. We use Precision and Recall to model a worker’s quality.

We first introduce our general principle, which captures the inherent relation

between the truth and workers’ models (Section 6.4.1). We then apply the prin-

ciple to developing an iterative method that solves the problem (Section 6.4.2).

Finally we talk about how to speed up online computation (Section 6.4.3).

6.4.1 General Principle

The truth and workers’ models have an inherent relation: if a label is se-

lected by high-quality workers for an object, then the label is likely to be a cor-

rect label for the object; meanwhile, if a worker selects correct labels often, then

the worker will be assigned with a high quality.

To apply the principle, we treat the truth and worker model as two sets of

parameters, and compute them in an iterative way. To be specific, we denote

the truth of each (oi, `i,j) (1 ≤ i ≤ n, 1 ≤ j ≤ |Li|) as qi,j ∈ [0, 1], which is the

probability that label `i,j is a correct label for oi given all workers’ votes (denoted

as V, will clarify later), i.e., qi,j = Pr(ti,j = Y | V); we denote the model of each

worker w (w ∈ W) as Precision pw ∈ [0, 1] and Recall rw ∈ [0, 1]. Inspired by the

Expectation-Maximization (EM) framework [49], which is widely adopted by

existing crowdsourcing works [48, 89, 92, 116, 222], in each iteration, we devise

the following two steps:

Step 1: we assume that pw, rw for each worker w is known, and infer the (prob-

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 209

abilistic) truth qi,j for each (oi, `i,j) pair, which is called Inferring the Truth;

Step 2: based on the computed truth qi,j for each (oi, `i,j) pair, we estimate each

worker w’s model pw, rw, which is called Estimating Workers’ Models.

6.4.2 Iterative Method

Inferring the Truth

Based on the known (pw, rw) for each worker w, we infer the truth qi,j =

Pr(ti,j = Y | V) for each (oi, `i,j) pair (note that as ti,j = Y/N, we know that

Pr(ti,j = N | V) = 1− qi,j). To clarify, we denote V = {Vi,j | 1 ≤ i ≤ n, 1 ≤ j ≤
|Li|} as the vote set, where each element Vi,j = {(w, v)} is a set of workers’ votes

for the pair (oi, `i,j), i.e., worker w votes v for (oi, `i,j), where v is Y or N. For

example, from Table 6.3 we know that V1,2 = {(w1, Y), (w2, Y), (w3, N), (w4, Y)}.

We assume that the votes are given independently (a typical assumption

adopted in existing works [92, 127, 149, 211, 219, 222]), then ti,j is only related to

Vi,j. Based on the Bayes’ Theorem [23], we have

qi,j = Pr(ti,j = Y | Vi,j) ∝ Pr(Vi,j | ti,j = Y) · α, (6.1)

where α is called prior, which represent general knowledge that the probability

of a label is correct. Later we discuss how the value α can be set. Next we use

the known workers’ models to deduce Pr(Vi,j | ti,j = Y) and Pr(Vi,j | ti,j = N). For

worker w, its model pw and rw can be represented as: pw = Pr(ti,j = Y | vw
i,j = Y) ,

rw = Pr(vw
i,j = Y | ti,j = Y) .

(6.2)

(1) Pr(Vi,j | ti,j = Y) = ∏(w,v)∈Vi,j
Pr(vw

i,j = v | ti,j = Y), that is, Pr(Vi,j | ti,j = Y)

depends on workers’ votes. If worker w votes v = Y, then Pr(vw
i,j = Y | ti,j =

210 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

Y) = rw (Equation 6.2); otherwise, if v = N, then Pr(vw
i,j = N | ti,j = Y) =

1−Pr(vw
i,j = Y | ti,j = Y) = 1− rw. For ease of presentation, we use the indicator

function 1{·} which returns 1 if the argument is true; 0, otherwise. E.g., 1{2=5} =

0 and 1{5=5} = 1. Then

Pr(Vi,j | ti,j = Y) = ∏
(w,v)∈Vi,j

(rw)
1{v=Y} · (1− rw)

1{v=N} . (6.3)

(2) We have Pr(Vi,j | ti,j = N) = ∏(w,v)∈Vi,j
Pr(vw

i,j = v | ti,j = N).

We can prove Theorem 6.1.

Theorem 6.1. Pr(vw
i,j = Y | ti,j = N) = α·(1−pw)·rw

(1−α)·pw
.

Proof. To prove it, as discussed above, we have

Pr(ti,j = Y | vw
i,j = Y) =

Pr(vw
i,j = Y | ti,j = Y) · α

Pr(vw
i,j = Y | ti,j = Y) · α + Pr(vw

i,j = Y | ti,j = N) · (1− α)
.

Based on Equation 6.2, the above formula is indeed

pw =
rw · α

rw · α + Pr(vw
i,j = Y | ti,j = N) · (1− α)

,

thus Pr(vw
i,j = Y | ti,j = N) = α·(1−pw)·rw

(1−α)·pw
.

Then we can derive Pr(Vi,j | ti,j = N) as

∏
(w,v)∈Vi,j

(α · (1− pw) · rw

(1− α) · pw

)1{v=Y} ·
(
1− α · (1− pw) · rw

(1− α) · pw

)1{v=N} . (6.4)

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 211

Thus with known workers’ models, we can compute each qi,j (Equation 6.1)

based on Equations 6.3 and 6.4.

Example 16. Suppose we have V based on Table 6.3 and workers’ qualities in Table 6.7.

We take (o1, `1,1): label tree (`1,1) in o1 as an example and compute q1,1 = Pr(t1,1 =

Y | V). As w2, w3, w4 vote Y and w1 votes N, based on Equation 6.3, Pr(V1,1 | t1,1 =

Y) = (1 − rw1)rw2rw3rw4 = 0.57 ∗ 0.71 ∗ 0.43 ∗ 1 = 0.174. Similarly, based on

Equation 6.4, Pr(V1,1 | t1,1 = N) = 0.028. Thus from Equation 6.1 we get q1,1 = 86%,

i.e., tree is likely to be a correct label for o1.

Estimating Workers’ Models

Note that if the truth is clearly known, we can derive all workers’ contin-

gency tables (e.g., Table 6.6) by simply counting TP, FP, FN and TN for each

worker. However, in last step we get the probabilistic truth qi,j for each pair

(oi, `i,j). Although we may easily decide ti,j = Y(N) by considering if qi,j ≥ 0.5

(or not), it cannot keep track of the probabilistic information which reflects the

degree to be Y/N. Instead, we compute TP, FP, FN and TN for each worker by

using the exact value of qi,j. Formally, we denote Dw (w ∈ W) as a set of votes

given by worker w, and it contains a set of tuples ((oi, `i,j), v) representing that

worker w votes v for the pair (oi, `i,j), where v is Y or N. For example, from

Table 6.3 we know Dw1 = {((o1, `1,1), N), . . . , ((o2, `2,10), Y)}. Then for a worker

w, TP is the number of (oi, `i,j) pairs that worker w votes Y and the truth is Y,

i.e., TP = ∑((oi ,`i,j),v)∈Dw
1{v=Y} · 1{ti,j=Y}.

Thus for worker w, we can compute E[TP] and similarly E[FP], E[FN],

and E[TN] as follows:

212 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

E[TP] = ∑
((oi ,`i,j),v)∈Dw

1{v=Y} · qi,j,

E[FP] = ∑
((oi ,`i,j),v)∈Dw

1{v=Y} · (1− qi,j),

E[FN] = ∑
((oi ,`i,j),v)∈Dw

1{v=N} · qi,j.

(6.5)

For each w ∈ W , the pw and rw are computed as

pw =
E[TP]

E[TP] + E[FP]
, rw =

E[TP]

E[TP] + E[FN]
. (6.6)

Example 17. In Table 6.3 we know that worker w1 votes Y for (o1, `1,2), (o2, `2,2) and

(o2, `2,10). Suppose the computed qi,j for those pairs are 0.9, 0.8, 0.7 respectively, then

based on Equation 6.5, we can estimate TP for worker w1 as E[TP] = 0.9 + 0.8 +

0.7 = 2.4. Similarly we can estimate FP, FN, TN for worker w1 and compute pw1 , rw1

following Equation 6.6.

Iterative Computation Algorithm

We design an iterative method in Algorithm 12. It takes all workers’ votes

as input, and outputs all probabilistic truth and workers’ models. With the

initialized workers’ models, it adopts an iterative approach, and the two steps

are run in each iteration. Then it terminates if convergence is reached. Next we

address the prior, initialization, convergence and time complexity, respectively.

Prior (α). To set the prior α (i.e., the probability that a label is Y), we can compute

it in an unsupervised approach, i.e., after the two steps in each iteration, we can

update α as (∑n
i=1 ∑|Li |

j=1 qi,j)/(∑n
i=1 |Li|).

Initialization. To initialize all workers’ models, a direct way is to assign pw and

rw with a fixed value d ∈ [0, 1] for each worker w. In our experiments, we

observe that it is robust when each worker is initialized as a decent worker, i.e.,

pw = rw = d ≥ 0.6 for w ∈ W .

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 213

Algorithm 12 Iterative Computation (Chapter 6).
Input: Workers’ votes (V, Dw for w ∈ W), label correlationsM(·)
Output: qi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ |Li|, (pw, rw) for w ∈ W

1: Initialize (pw, rw) for w ∈ W ;
2: while true do
3: // Inferring the Truth
4: for 1 ≤ i ≤ n, 1 ≤ j ≤ |Li| do
5: Compute qi,j using Equations 6.1, 6.3 and 6.4;
6: end for
7: // Considering Label Correlations
8: for 1 ≤ i ≤ n, 1 ≤ j ≤ |Li| do
9: Si,j = ln[qi,j/(1− qi,j)] ;

10: Update Si,j to S′i,j based on Equation 6.7;

11: qi,j = sig(S′i,j) = 1/(1 + e−S′i,j);
12: end for
13: // Estimating Workers’ Models
14: for w ∈ W do
15: Compute pw and rw using Equations 6.5 and 6.6;
16: end for
17: // Check for Convergence
18: if Converged then
19: break;
20: end if
21: end while
22: return qi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ |Li|, (pw, rw) for w ∈ W ;

Convergence. To check the convergence, a typical way is to see whether or not

the change of parameters (i.e., all truth and worker models) in subsequent iter-

ation is below some predefined threshold ε (e.g., 10−3). In our experiments, we

observe that our proposed approach is quick to converge (≤ 20 iterations).

Time Complexity. In each iteration, there are three main parts: (1) step 1: O(m ·
|W|); (2) step 2: O(m · |W|); (3) check for Convergence: O(m + |W|). Suppose

it takes c iterations to converge, the total time complexity is O(c · m · |W|). In

our experiments, we observe that it converges very quickly (c ≤ 20) for various

datasets.

214 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

6.4.3 Speed-Up Computation

We now discuss how to incrementally update the parameters (i.e., the truth

and workers’ models). Assume we are faced with a situation that the workers’

answers come in a high velocity, and we need an incremental method that in-

stantly updates previously stored parameters when a new answer arrives. The

basic idea is that upon receiving a worker’s new answer, we only choose a small

subset of related parameters to update, e.g., the truth of voted pairs, and all

workers’ models who have ever answered the voted pairs. The challenge is that

(1) when a worker comes, which subset of parameters are to update; (2) what

parameters should be stored for each pair and each worker, such that the up-

date can be facilitated. In practice, we can integrate the incremental approach

into the iterative approach in a delayed manner, i.e., we run iterative approach

when receiving every 100 answers; and among the 100 answers, we only update

parameters using the incremental approach.

The detailed algorithm is shown in Algorithm 13. The basic idea is that

upon receiving a worker’s answer (say worker w votes v for the pair (oi, `i,j)),

we only update the most important parameters, i.e., the truth of the pair and

the models of workers who have answered the pair before. To be precise, we

store the following parameters in order to facilitate incremental updates:

(1) for a worker w ∈ W , we store three parameters: ETPw, EFPw, EFNw, repre-

senting the expectations of TP, FP, FN, respectively;

(2) for a pair (oi, `i,j) (1 ≤ i ≤ n, 1 ≤ j ≤ |Li|), we store mY
i,j and mN

i,j, representing

Pr(Vi,j | ti,j = Y) and Pr(Vi,j | ti,j = N) respectively.

Then if we want to compute any truth and worker’s model, they can be di-

rectly returned based on the above stored parameters. For example, for the

pair (oi, `i,j), we can get qi,j =
mY

i,j

mY
i,j+mN

i,j
; for worker w ∈ W , we can derive

pw = ETPw
ETPw+EFPw

and rw = ETPw
ETPw+EFNw

.

Algorithm 13 updates the stored parameters when it gets a new vote, i.e.,

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 215

Algorithm 13 Incremental Computation (Chapter 6).
Input: (w, v, (oi, `i,j)) (worker w votes v for the pair (oi, `i,j)),

V, (mY
i,j, mN

i,j) for 1 ≤ i ≤ n and 1 ≤ j ≤ |Li|,
(ETPw, EFPw, EFNw, ETNw) for w ∈ W

Output: V, (mY
i,j, mN

i,j) for 1 ≤ i ≤ n and 1 ≤ j ≤ |Li|,
(ETPw, EFPw, EFNw, ETNw) for w ∈ W

1: tempT = mY
i,j, tempN = mN

i,j;

2: // (1) Inferring the Truth
3: if v = Y then
4: mY

i,j = mY
i,j ·

ETPw
ETPw+EFPw

;

5: mN
i,j = mN

i,j ·
EFPw

ETPw+EFNw
;

6: else
7: mY

i,j = mY
i,j · (1−

ETPw
ETPw+EFPw

);

8: mN
i,j = mN

i,j · (1−
EFPw

ETPw+EFNw
);

9: end if
10: // (2) Estimating Workers’ Models
11: // (2.1) Update the parameters for worker w
12: if v = Y then
13: ETPw = ETPw +

mY
i,j

mY
i,j+mN

i,j
;

14: EFPw = EFPw +
mN

i,j

mY
i,j+mN

i,j
;

15: else
16: EFNw = EFNw +

mY
i,j

mY
i,j+mN

i,j
;

17: ETNw = ETNw +
mN

i,j

mY
i,j+mN

i,j
;

18: end if
19: // (2.2) Update the parameters for workers who have voted the pair (oi, `i,j)

before
20: for (w′, v′) ∈ Vi,j do
21: if v′ = Y then
22: ETPw′ = ETPw′ − tempT

tempT+tempN +
mY

i,j

mY
i,j+mN

i,j
;

23: EFPw′ = EFPw′ − tempN
tempT+tempN +

mN
i,j

mY
i,j+mN

i,j
;

24: else
25: EFNw′ = EFNw′ − tempT

tempT+tempN +
mY

i,j

mY
i,j+mN

i,j
;

26: ETNw′ = ETNw′ − tempN
tempT+tempN +

mN
i,j

mY
i,j+mN

i,j
;

27: end if
28: end for
29: Vi,j = Vi,j ∪ {(w, v)};
30: return V, (mY

i,j, mN
i,j) for 1 ≤ i ≤ n and 1 ≤ j ≤ |Li|, (ETPw, EFPw, EFNw,

ETNw) for w ∈ W ;

216 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

a worker w votes v for a pair (oi, `i,j). It shows how the the related parameters

will be updated:

Inferring the Truth (lines 2-8). In this step, as the pair (oi, `i,j) gets a new vote,

we update the parameters related to (oi, `i,j), i.e., mY
i,j and mN

i,j. From Equation 6.3

we know how to update mY
i,j upon receiving a new vote v, that is, if v = Y, then

rw = ETPw
ETPw+EFNw

will be multiplied to mY
i,j; otherwise, 1− rw will be multiplied

to mY
i,j. We can derive similar update formula for mN

i,j from Equation 6.4. These

updates can be reflected in lines 3-8.

Estimating Workers’ Models (lines 9-24). In this step, we update the related

workers’ parameters. When worker w gives a vote, the worker’s parameters

(i.e., ETPw, EFNw, EFPw, and ETNw) will be updated. For example, based on

Equation 6.5, we know that once a new vote v = Y is received, then ETPw will

be added with the value qi,j =
mY

i,j

mY
i,j+mN

i,j
. Similarly, once a new vote v = N is

received, then ETPw will be similarly updated (lines 11-16).

Besides worker w, we also know that qi,j has been updated, which will af-

fect the parameters for the workers who have voted for (oi, `i,j) before. In order

to update those affected parameters, we have to replace the old probability with

the new one. So we first use tempT and tempN to temporally store mY
i,j and mN

i,j

(line 1). Then we update each worker who has voted for (oi, `i,j) before (lines

18-24). For example, for such a worker w′, if the worker previously votes Y, then

the worker’s model ETPw′ will be updated by first decreasing the old probabil-

ity (tempT
tempT+tempN), and then adding the new one (

mY
i,j

mY
i,j+mN

i,j
).

Finally we update Vi,j by adding the new vote (line 25). Next we analyze

the time complexity of Algorithm 13.

Time Complexity. For the time complexity of Algorithm 13, we only have to

deal with lines 18-24 (an iteration), as other steps can be finished in constant

time. For the iteration (i.e., lines 18-24), it enumerates all elements in Vi,j and

each iteration takes constant time. So the time complexity is O(|Vi,j|) (if receiv-

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 217

ing a new vote for (oi, `i,j)). As Vi,j stores all previous votes for (oi, `i,j), so the

complexity is constrained by the maximum number of times a pair has been

answered, which is O(|W|). It is much more efficient compared with Algo-

rithm 12, which costs O(c · |W| · ∑n
i=1 |Li|), especially when the number of all

pairs (i.e., ∑n
i=1 |Li|) is big.

6.5 Label Correlations

Since the labels of an object are not independent, we study how label cor-

relations can facilitate inferring the truth. There are two sub-problems. The first

is how to obtain the label correlations. The second is how to integrate the label

correlations into our proposed method. Next we address them, respectively.

We can utilize existing label-correlation techniques [24, 210, 213] to gener-

ate the label correlations and regard them as prior input to our problem. Gen-

erally they can be classified into two categories: pairwise label correlations and

higher order label correlations. Pairwise label correlations capture the relations

between pairwise labels, which are mostly used because of its simplicity. For

object oi, the total number of pairwise label combinations is at most |Li|2. For

example, the conditional dependency of two labels defines the probability that

one label is correct for an object under the condition that the other label is cor-

rect. Higher oder label correlations capture the relations among subsets of la-

bels, e.g., the co-existence probability among multiple labels, which are not fre-

quently used mainly because of the introduced high complexity in parameters.

Thus we focus on pairwise label correlations in this chapter, and leave higher

order correlations for future work.

Label Correlation Function. It can be generalized that existing works [24, 210,

213] use a small subset of training data and derive a functionM(·), which takes

two labels a, b as input, and outputs a score in [−1, 1] that encodes the impli-

cation of label a’s correctness to label b’s correctness on an object. For exam-

218 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

ple, M(sun, sky)=0.9 means that label sun’s correctness strongly implies label

sky’s correctness, i.e., if sun is correct on an object, it is highly likely that sky

is also correct; whileM(happy, sad)=−0.9 means that label happy’s correctness

strongly implies label sad’s incorrectness, i.e., if happy is correct on an object,

it is highly likely that sad is not correct. Recently, some open-source tools, e.g.,

word2vec [202] takes a large text corpus as input and outputs a vector for each

word, encoding the information of its adjacent words. Intuitively, the more fre-

quent two words occur together in text corpus, the more similar their vectors

are. We can also regard each label as a word and compute the cosine similarity

of the two labels’ vectors.

Using Label Correlations to Improve Inference. Our problem is “Given the

computed probabilistic truth qi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ |Li| (i.e., the input), how to

refine each qi,j by considering label correlations (i.e.,M(·))?”

SinceM(·) may output negative values, directly acting it on qi,j may con-

tradict to the probability constraint. Inspired by the sigmoid function, i.e.,

sig(x) = 1
1+e−x (x ∈ (−∞,+∞), sig(·) ∈ (0, 1)), which is a monotonic increasing

function, and it has been successfully used in various models as the mapping

between a real value and a probability. So for each qi,j, we consider label corre-

lations and update as:

Step 1: we convert qi,j to a real value Si,j;

Step 2: we actM(·) on Si,j to derive a new S′i,j;

Step 3: we revert S′i,j to a new probability qi,j.

In the first step, based on the sigmoid function, we set qi,j =
1

1+e−Si,j
and get

Si,j = ln qi,j
1−qi,j

. The real value Si,j ∈ (−∞,+∞) represents the confidence that

label `i,j is correct for oi.

In the second step, our idea is to update Si,j based on the impact of related

labels in oi. Intuitively, supposeM(`i,k, `i,j) is high, e.g., `i,k=sun and `i,j=sky,

and Si,k is confident, i.e., if sun is likely to be a correct label for oi, then sky is

likely to be a correct label for oi. So we update Si,j to S′i,j, as follows:

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 219

S′i,j = α · Si,j + (1− α) ·∑`i,k∈RL Si,k ·M(`i,k, `i,j) . (6.7)

We can see that S′i,j is the weighted sum of Si,j, and an aggregated portion of re-

lated labels (RL). For each related label `i,k ∈ RL, it multiples its confidence Si,k

for oi, and the implication of its correctness to `i,j’s correctness, i.e.,M(`i,k, `i,j).

There are two parameters: (1) the weight α ∈ [0, 1] controls the impacts be-

tween itself (Si,j) and related labels. From experiments (Section 6.7) we set

α ∈ [0.6, 0.7], which gives itself more impact, but at the same time considers

related labels. (2) RL is a set of related labels. We can roughly set it as all labels

in oi except itself (`i,j), i.e., RL = {`i,k | 1 ≤ k ≤ |Li| ∧ k 6= j}. Although we

can consider other choices, e.g., based on the definition ofM(·), we can focus

on the labels `i,k whose confidence value is high (e.g., qi,k > 0.8), however, we

find that the simply way already performs very well.

In the third step, we revert the derived S′i,j to a new probability: qi,j =

sig(S′i,j) = 1/(1 + e−S′i,j).

As the three steps require qi,j (1 ≤ i ≤ n, 1 ≤ j ≤ |Li|) as input, we can

consider label correlations in our iterative method by running these three steps

after inferring the truth in each iteration.

Time Complexity. In each iteration, we update all truth qi,j withM(·). For each

qi,j, steps 1 and 3 take constant time; in step 2 (Equation 6.7), it considers at most

O(|Li|) related labels in oi. Let e = max1≤i≤n |Li|, then it takes O(m · e) for all

pairs, which is dominated by other parts in last section (i.e.,O(m · |W|)) if there

are enough workers.

Example 18. Suppose workers’ answers and qualities are known in Tables 6.2 and 6.7,

and we take `2,4 (lake) in o2 as an example. In Section 6.4 we can get q2,4=0.26.

Then it is converted to S2,4=−1.05. SupposeM(boat, lake)=0.9, and for label boat

(`2,10), similarly we get q2,10=0.99 and S2,10=4.6.17 To update S2,4, for simplicity

we only consider the most related label boat, and based on Equation 6.7 (α=0.7),

17Since pw1 = 1, then q2,10 = 1 and S2,10 = +∞. For illustration we consider q2,10 = 0.99.

220 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

S′2,4=0.7·S2,4+0.3·S2,10·0.9= 0.507. Finally q2,4=sig(S′2,4)=0.62. We can see that as

boat is confident (99%) for o2, and the implication of boat to lake is strong (0.9), this

increases the probability (from 26% to 62%) that lake is correct for o2.

6.6 Online Task Assignment

In this section, we study the Task Assignment Problem: “Given the vote set V

collected so far, when a worker w comes, which k objects (in all n ones) should

be assigned to worker w?”.

In selecting k objects, our basic idea is to estimate how much uncertainty

can be reduced for each object, by considering if the task will be answered by

w. Then we select the optimal k-object combination with the highest uncertainty

reduction. However, to achieve the goal, there are two challenges here: (1) to

select k out of n objects, we have to consider all (n
k) combinations, which is ex-

ponential; (2) even for a single object oi, to consider how worker w may answer

it, there are still 2|Li | possible cases, which is exponential.

To address it, in the following, we first focus on selecting a single object,

and then generalize to selecting multiple (e.g., k) objects.

Selecting a Single Object. When a worker w comes, to decide which object

should be assigned to w, our idea is to select the object whose uncertainty can

be reduced the most if the object is answered by worker w. To achieve the goal,

for each object oi (1 ≤ i ≤ n), we adopt the following three steps:

Step 1: we measure the object’s uncertainty U(oi);

Step 2: we calculate the expected uncertainty if it is answered by w, denoted as

E[U(oi) | w answers oi];

Step 3: we compute its uncertainty reduction

∆U(oi) = U(oi)−E[U(oi) | w answers oi]. (6.8)

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 221

We select the object whose uncertainty reduces most.

In the first step, we need to measure oi’s uncertainty based on workers’

answers (i.e., V).

Definition 6.6 (Uncertainty). We first define the uncertainty of a pair (oi, `i,j) based

on Shannon Entropy [167], denoted as U((oi, `i,j)) = −[qi,j · log qi,j + (1 − qi,j) ·
log(1− qi,j)]. Then the uncertainty of an object oi is defined as the sum of the uncer-

tainty of all pairs in oi, i.e., U(oi) = ∑|Li |
j=1 U((oi, `i,j)).

In the second step, to calculate the expected uncertainty of object oi by

considering if it is answered by worker w, we first study how to compute the

expected uncertainty of a pair (oi, `i,j) if worker w votes for that, denoted as

E[U((oi, `i,j)) | w votes for (oi, `i,j)]. The challenge is that we do not know

worker w’s vote (Y or N) for (oi, `i,j) before oi is assigned. To address this issue,

we estimate worker w’s vote based on the truth probability qi,j and the worker’s

quality. If worker w has performed tasks before, then the worker’s quality has

been estimated and stored in the database already (Figure 6.2); otherwise, if w is

a new worker, we can use the average quality (i.e., precision and recall) of work-

ers that have performed on the tasks, which can be derived from the database.

Formally, we denote worker w’s quality as pw, rw. To calculate the expected

uncertainty of a pair (oi, `i,j), we (1) estimate the vote (Y/N) that worker w will

give to the pair, and (2) estimate how the truth qi,j is updated if worker w votes

Y/N for the pair. We address these two problems in Theorems 6.2 and 6.3.

Theorem 6.2. The probability that a worker w will vote Y for (oi, `i,j) is Pr(vw
i,j =

Y | V) = rw · qi,j +
α·(1−pw)·rw
(1−α)·pw

· (1− qi,j).

Proof. Based on the Bayes’ Theorem [23], considering ti,j ∈ {Y, N}we can derive

that

Pr(vw
i,j = Y | V) =Pr(vw

i,j = Y | ti,j = Y, V) · Pr(ti,j = Y | V)

+ Pr(vw
i,j = Y | ti,j = N, V) · Pr(ti,j = N | V).

222 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

Given a known ti,j, vw
i,j is independent of V, thus

Pr(vw
i,j = Y | ti,j = Y, V) = Pr(vw

i,j = Y | ti,j = Y) = rw,

Pr(vw
i,j = Y | ti,j = N, V) = Pr(vw

i,j = Y | ti,j = N) = α·(1−pw)·rw
(1−α)·pw

. Then we can

derive

Pr(vw
i,j = Y | V) = rw · qi,j +

α · (1− pw) · rw

(1− α) · pw
· (1− qi,j),

which finalizes the proof.

Theorem 6.3. If worker w gives a new vote Y for (oi, `i,j), then qi,j is updated to

qY
i,j = qi,j/[qi,j + (1− qi,j) · α·(1−pw)

(1−α)·pw
]; otherwise, if the worker’s new vote is N, then

qi,j is updated to qN
i,j = qi,j/[qi,j + (1− qi,j) ·

(
1− α·(1−pw)·rw

(1−α)·pw

)
/(1− rw)].

Proof. If worker w gives a new vote v for (oi, `i,j), from Equations 6.3 and 6.4, we

know that Pr(Vi,j | ti,j = Y) is updated as Pr(Vi,j | ti,j = Y) · A and Pr(Vi,j | ti,j =

N) is updated as Pr(Vi,j | ti,j = N) · B, where A and B are denoted as follows:

 A = (rw)
1{v=Y} · (1− rw)

1{v=N} ,

B =
(α·(1−pw)·rw

(1−α)·pw

)1{v=Y} ·
(
1− α·(1−pw)·rw

(1−α)·pw

)1{v=N} .

Then based on Equation 6.1, qi,j should be updated as

Pr(Vi,j | ti,j = Y) · A
Pr(Vi,j | ti,j = Y) · A + Pr(Vi,j | ti,j = N) · B .

By dividing A · [Pr(Vi,j | ti,j = Y) + Pr(Vi,j | ti,j = N)] both on its numerator

and denominator, we can derive that qi,j is updated as qi,j/[qi,j + (1− qi,j) · B
A].

Thus if worker w gives a new vote Y for (oi, `i,j), then qi,j is updated as

qY
i,j = qi,j/[qi,j + (1− qi,j) · α·(1−pw)

(1−α)·pw
]; otherwise, if the worker’s new vote is N,

then qi,j is updated as

qN
i,j = qi,j/[qi,j + (1− qi,j) ·

(
1− α·(1−pw)·rw

(1−α)·pw

)
/(1− rw)].

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 223

Based on the results in Theorems 6.2 and 6.3, we have

E[U((oi, `i,j)) | w votes for (oi, `i,j)]

= UY
i,j · Pr(vw

i,j = Y | V) + UN
i,j · Pr(vw

i,j = N | V), where UY
i,j = −[qY

i,j · log qY
i,j + (1− qY

i,j) · log(1− qY
i,j)],

UN
i,j = −[qN

i,j · log qN
i,j + (1− qN

i,j) · log(1− qN
i,j)].

(6.9)

Note that Pr(vw
i,j = Y | V) and Pr(vw

i,j = N | V) can be derived from Theorem 6.2,

and qY
i,j, qN

i,j can be derived from Theorem 6.3. Intuitively, Equation 6.9 considers

the cases that worker w will vote Y (N) for (oi, `i,j), and the updated uncertainty

UY
i,j (UN

i,j) if the vote is given.

Example 19. Suppose workers’ answers (V) and qualities are known in Ta-

bles 6.3 and 6.7. We can compute q1,1 = 0.86. Suppose a new worker w /∈ W comes

and we compute both U((o1, `1,1)) and E[U((o1, `1,1)) | w votes for (o1, `1,1)]. First

U((o1, `1,1)) = −(0.86 ∗ log 0.86+ 0.14 ∗ log 0.14) = 0.4. The new worker w’s qual-

ity is estimated as the average quality: pw = 0.77, rw = 0.64 from Table 6.7. Based

on Theorem 6.2, we get Pr(vw
1,1 = Y | V) = 0.64 ∗ 0.86 + (0.64

0.77 − 0.64) ∗ 0.14 = 0.58

and Pr(vw
1,1 = N | V) = 1 − 0.58 = 0.42. Based on Theorem 6.3 we get

qY
1,1 = 0.86/(0.86 + 0.14 ∗ 0.23

0.77) = 0.95, and similarly qN
1,1 = 0.73. Then we can

derive UY
1,1 = −(0.95 ∗ log 0.95 + 0.05 ∗ log 0.05) = 0.2 and UN

1,1 = 0.58. Finally

E[U((o1, `1,1)) | w votes for (o1, `1,1)] = 0.2 ∗ 0.58 + 0.58 ∗ 0.42 = 0.36. The un-

certainty of (o1, `1,1) changes from 0.4 to 0.36 after being voted by w.

Having known how to compute the expected uncertainty of a pair, we now

compute the expected uncertainty of object oi if it is answered by worker w,

i.e., E[U(oi) | w answers oi]. However, it is challenging to directly compute

it, as it requires to enumerate all possible answers of worker w to oi: {Y, N}|Li |,

containing 2|Li | items.

We next prove the following theorem, which efficiently computes the ex-

224 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

pected uncertainty of an object oi, reducing the complexity from exponential

(2|Li |) to linear (|Li|). The basic idea is that if we decompose the above for-

mula as two parts, where each part considers that w votes Y (N) to a pair (e.g.,

(oi, `i,1)), then we can verify that the expected uncertainty of the pair can be ex-

tracted from the above formula. Similarly the expected uncertainty of all pairs

in oi can be extracted and added independently.

Theorem 6.4. The expected uncertainty of oi (1 ≤ i ≤ n) is the sum of

the expected uncertainties of all pairs in oi, i.e., E[U(oi) | w answers oi] =

∑|Li |
j=1 E[U((oi, `i,j)) | w votes for (oi, `i,j)].

Proof. Let σ = {σ1, σ2, . . . , σ|Li |} denote worker w’s one possible answer for oi,

where each σj = Y(N) (1 ≤ j ≤ |Li|) represents that worker w votes Y(N) for

(oi, `i,j). Then for each σ ∈ {Y, N}|Li |, we have to compute the uncertainty of oi if

worker w gives answer σ, denoted as Uσ
i . Based on Definition 6.6, it aggregates

the uncertainty of all pairs in oi considering the answer σ, i.e.,

Uσ
i = ∑|σ|j=1−[q

σj
i,j · log q

σj
i,j + (1− q

σj
i,j) · log(1− q

σj
i,j)],

where q
σj
i,j (i.e., qY

i,j or qN
i,j) is defined in Theorem 6.3. If we assume that worker w

will give independent votes to (oi, `i,j), then we can derive

E[U(oi) | w answers oi] = ∑
σ∈{Y,N}|Li |

Uσ
i ·
|Li |

∏
j=1

Pr(vw
i,j = σj |V).

Given the above formula, we can decompose its right hand side into the

sum of two parts: the first part is the sum of 2|Li |−1 elements, considering that

σ|Li | = Y (worker w votes Y for (oi, `i,|Li |)), and the second part is the sum of

the remaining 2|Li |−1 elements, considering that σ|Li | = N (worker w votes N for

(oi, `i,|Li |)), i.e.,

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 225

E[U(oi) | w answers oi] =

∑
σ′∈{Y,N}|Li |−1

(
Uσ′

i + UY
i,|Li |
)

Pr(vw
i,|Li | = Y | V)

|Li |−1

∏
j=1

Pr(vw
i,j = σ′j | V)

+ ∑
σ′∈{Y,N}|Li |−1

(
Uσ′

i + UN
i,|Li |
)

Pr(vw
i,|Li | = N | V)

|Li |−1

∏
j=1

Pr(vw
i,j = σ′j | V).

With a careful deduction, we can derive that

E[U(oi) | w answers oi]

= ∑
σ′∈{Y,N}|Li |−1

Uσ′
i ·
|Li |−1

∏
j=1

Pr(vw
i,j = σ′i | V)

+ E[U((oi, `i,|Li |)) | w votes for (oi, `i,|Li |)].

The above formula shows that the expected uncertainty of the pair

(oi, `i,|Li |) can be extracted. Following the same way, the expected uncertainty

of all pairs in oi can be extracted and added independently. Thus we have

E[U(oi) | w answers oi]

= ∑|Li |
j=1 E[U((oi, `i,j)) | w votes for (oi, `i,j)].

In the third step, we can compute the uncertainty reduction of object oi:

∆U(oi) = U(oi)− E[U(oi) | w answers oi] and select a single object with the

highest reduction ∆U(oi). Note that label correlations are implicitly considered

in the assignment, as it takes the derived qi,j to further compute the uncertainty

and estimate worker’s votes.

226 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

Selecting Multiple Objects. When a worker comes, existing crowdsourcing

platforms such as AMT [1] can support to batch multiple tasks in a HIT (Human

Intelligence Task), and assign for the coming worker. Similar to Theorem 6.4, we

can easily extend our method to select k objects in Theorem 6.5, by retrieving

top-k objects with highest reduction in uncertainty.

Theorem 6.5. The optimal k-object combination is to select k objects with the highest

reduction in uncertainty, i.e., ∆U(oi).

Proof. As a worker gives answers independently, suppose we select a fixed set

of k objects (denoted as T ′) to assign for the coming worker w, i.e., T ′ = {oi}
and |T ′| = k, then following the proof for Theorem 6.4, we can similarly prove

that the expected uncertainty for these k objects can be regarded as the sum of

expected uncertainties of individual object, i.e.,

E[∑oi∈T ′
U(oi) | w answers objects in T ′]

= ∑oi∈T ′
E[U(oi) | w answers oi].

As our target is to select the optimal k-object combination, such that the uncer-

tainty can be reduced the most. Based on the above Equation, we know that for

a fixed set of objects T ′, their uncertainty reduction can be expressed as

∑oi∈T ′
∆U(oi).

Then in order to select the optimal k-object combination, we can treat each

object independently, i.e., we compute each object oi’s uncertainty reduction

∆U(oi), and select the top-k objects with the highest uncertainty reduction.

Time Complexity. To select top-k objects with highest uncertainty reduction,

we have to compute ∆U(oi) for each object oi. For an object oi (1 ≤ i ≤ n), step 1

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 227

takes O(|Li|) time (Definition 6.6); step 2 also takes O(|Li|) time (Theorem 6.4);

step 3 takes constant time (Equation 6.8). Then computing ∆U(oi) for all objects

takes O(m) time, where m = ∑n
i=1 |Li|. As selecting top-k objects requires O(n)

time (the problem of finding top-k elements in an n-array can be solved linearly

using the PICK algorithm [26]), the total time complexity of task assignment

problem is O(m).

6.7 Experiments

In this section, we evaluate Comet on both real-world datasets and simu-

lated data. We perform experiments on two crowdsourcing platforms and ex-

amine the effectiveness and efficiency of Comet. We also evaluate the scalability

of Comet on simulated data. Comet is implemented in Python 2.7 and evaluated

on a machine with 8GB memory with Ubuntu OS.

6.7.1 Settings

Two Real-World Datasets

Image Tagging. Corel5k dataset [58] contains 5000 images, tagged with 260 la-

bels in all. We select 300 images with the most labels, and 20 labels that are most

frequently tagged: {water, sky, tree, people, grass, building, mountain, snow,

flower, cloud, rock, stone, street, plane, bear, field, sand, bird, beach, boat}. We

generate 300 tasks, where each task contains an image and 20 labels.

Email Tagging. Enron dataset [106] contains 1700 emails, tagged with 53 labels

in all. For better human readability, we filter the emails whose size is >1KB. In

the remaining 837 ones, we select 300 emails with the most labels, and 20 la-

bels that are most frequently tagged: {forwarded email, arrangement, company

business&strategy, new text&forwarded material, attachment, personal context,

document checking, employment arrangement, secret message, internal project,

228 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

California energy crisis, regulation, internal company operation, political influ-

ence, purely personal, point to url, alliance, internal company policy, empty

message, current company image}. We generate 300 tasks, where each task

contains an email (with contents in it) and 20 labels.

Two Crowdsourcing Platforms

ChinaCrowd [3]. ChinaCrowd is an emerging Chinese crowdsourcing plat-

form, whose workers are mostly Chinese people. We perform experiments on it

without quality control (i.e., no QC).

Amazon Mechanical Turk (AMT) [1]. AMT is a famous crowdsourcing plat-

form. When a worker finishes a task, the task requester can give feedback to the

platform on whether or not the worker’s answer is approved. AMT provides

each worker’s historical approval rate (for past tasks) to help task requester do

Quality Control. Thus we perform experiments on AMT with quality control

(i.e., with QC), by setting that a worker is qualified to answer our tasks only if

the worker’s historical approval rate is ≥ 70%.

Collecting Workers’ Answers

We publish two datasets, i.e., image tagging and email tagging (the ground

truth of the two datasets are known for evaluation purposes) on the above two

platforms, so there are 4 experiments in total, where each one corresponds to a

dataset on a platform. In each experiment, we assign each task to 5 workers, and

pay $0.01 for a worker upon answering a task. Thus for each experiment, we

pay 300× 5× $0.01 = $15 for workers. After all experiments are accomplished,

we collect 4 datasets of workers’ answers.

We summarize the dataset statistics in Table 6.8, where we record the

dataset, the platform, whether or not there is quality control (QC), #tasks,

#collected answers, the total cost and #workers participated for each experi-

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 229

Table 6.8: The Statistics of Datasets.
Dataset Image Tagging Email Tagging

Platform AMT [1] ChinaCrowd [3] AMT [1] ChinaCrowd [3]
QC with QC no QC with QC no QC

#tasks 300 300 300 300
#answers 300×5 300×5 300×5 300×5

cost $15 $15 $15 $15
#workers 62 10 60 9

ment. Note that AMT [1] has more workers participating in tasks than Chi-

naCrowd [3], and this is reasonable as ChinaCrowd [3] is a new platform, while

AMT has a lot more active workers.

Comparisons

Existing works [33, 92, 127, 141, 149, 222] model a worker differently. For

each worker model, we select one representative:

Majority Vote (MV) [33,141]. It does not model a worker and treat each worker

equally. Given the collected 5 votes for a pair, it decides to return Y/N that

attains more votes (or ≥ 3 votes).

CDAS [127]. It uses Accuracy to model a worker, which is also used in [48,

211]. CDAS [127] leverages workers’ answers for tasks to infer each worker’s

Accuracy.

DS [47, 92]: It uses both TNR and Recall to model a worker, which is also used

in [149, 222]. DS [92] takes workers’ answers as input, and iteratively infer all

workers’ models.

Comet: Our method with no label correlations.

Comet+: Our method that considers label correlations. We use a small set of

training data, i.e., the ground truth of 5% tasks in the original dataset to de-

riveM(·). For two labels a and b, the outputM(a, b) is the conditional prob-

ability that label b is correct given that label a is correct for an object. To get

230 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

M(sun, sky), for instance, we calculate the fraction of images having both la-

bels sun and sky, over those that have sun.

Metrics

We use different metrics to evaluate the effectiveness and efficiency when

comparing different methods.

Effectiveness. We use three metrics Precision, Recall, and F-score to measure the

quality of a method. Note that many existing works [92, 127, 149] use Accuracy

to evaluate the quality of a method. However, it does not fit to the multi-label

setting, because the number of incorrect labels is much higher than the correct

labels. In this case, the harmonic-mean of Precision and Recall, i.e., F-score, is

used [192, 195, 199, 222] to measure a method’s quality: F-score = 2·Precision·Recall
Precision+Recall .

Efficiency. We adopt the execution time.

6.7.2 Observing Workers’ Real Qualities

In order to observe workers’ real qualities in practice, we leverage the

ground truth and use workers’ answers for each dataset to compute each

worker’s real quality under different models. In Figure 6.4, each graph cor-

responds to the workers’ real qualities in one dataset. Generally speak-

ing, there are three ways to model a worker: (a) Accuracy [48, 127, 211], (b)

TNR+Recall [92,149,222], and (c) Precision+Recall (our model). So in each graph,

we draw three points for a worker, whose coordinates (x, y) are respectively

(Precision, Recall) in a ‘×’, (TNR, Recall) in a ‘�’ and (Accuracy, Accuracy) in a

‘�’. For example, Figure 6.4(a) shows workers’ real qualities in image tagging

collected from ChinaCrowd [3] (no QC). There are 10 workers that participate

in tasks, and each worker corresponds to 3 points in the graph, where each

point corresponds to one of the worker’s model. From Figure 6.4 we can ob-

serve that Accuracy and TNR are all very high for workers, even for workers

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 231

0%

20%

50%

75%

100%

0% 20% 50% 75% 100%

Y

X

(a) Image Tagging (no QC): 10 workers

0%

20%

50%

75%

100%

0% 20% 50% 75% 100%

Y

X

(b) Image Tagging (with QC): 62 workers

0%

20%

50%

75%

100%

0% 20% 50% 75% 100%

Y

X

(c) Email Tagging (no QC): 9 workers

0%

20%

50%

75%

100%

0% 20% 50% 75% 100%

Y

X

(d) Email Tagging (with QC): 60 workers

X: Precision, Y: Recall
X: TNR, Y: Recall

 X: Accuracy, Y: Accuracy

Figure 6.4: Observing Workers’ Real Qualities on Collected Datasets.

with no QC: in the 4 graphs, ‘�’s are located in the top right diagonal, and ‘�’

are located in the very right part of x-axis. Particularly, in Section 6.3, we have

shown Figure 6.3, which draws the histograms of all 141 workers’ qualities in

the 4 datasets, and the same observations can be derived. Moreover, under our

model (i.e., Precision, Recall), workers’ models vary in different settings. As can

be seen, generally workers in Figure 6.4(a) are of high Precision, low Recall; in

Figure 6.4(b) are of high Precision, high Recall; in Figure 6.4(c) are of low Precision,

low Recall; in Figure 6.4(d) are of mediate Precision, low Recall. On one hand, this

verifies the need to model a worker using Precision and Recall, as it can capture

different variants of workers; on the other hand, it also brings out the challenges

to achieve better results under various workers, which will be shown next.

232 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1

F
1
-s

c
o
re

Initialization Value (d)

(a) Initialization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

2 10 20 30 40 50P
a

ra
m

e
te

r
C

h
a

n
g

e
 τ

(c
)

Number of Iterations (c)

(b) Convergence

0%

20%

40%

60%

80%

100%

2 10 20 30 40 50

F
1
-s

c
o

re

Number of Iterations (c)

(c) Quality with Iterations

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1

F
1
-s

c
o

re

α

(d) Label Correlations

Image Tagging (No QC)
Image Tagging (With QC)

Email Tagging (No QC)
Email Tagging (With QC)

Figure 6.5: Truth Inference (Parameter Settings).

6.7.3 Truth Inference

For the Truth Inference Problem, we compare our proposed methods (Comet,

Comet+) with three state-of-the-art methods (MV, CDAS, DS). We first evaluate

how to set parameters, and then show the comparisons of different methods on

all collected datasets.

Parameter Settings

We evaluate the parameters in our iterative method, i.e., initialization, con-

vergence (Section 6.4) and label correlations (Section 6.5).

Initialization. Figure 6.5(a) shows the quality for different initializations on all

datasets. To be specific, for each worker w ∈ W , we initialize pw = rw = d

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 233

and vary d ∈ [0, 1] in each dataset. We run enough (50) rounds to ensure it

converges, and compute F-score for different d. It can be seen in Figure 6.5(a)

that all datasets reach its highest quality if the worker is initialized as a decent

worker, i.e., d ≥ 0.6. So we initialize each worker w ∈ W as pw = rw = 0.7.

Convergence. In Figures 6.5(b)(c), we study the number of iterations to con-

verge. We identify convergence if the change of parameters (all truth and

worker models) between subsequent iteration is below some predefined thresh-

old ε. For the c-th iteration, we denote the computed truth as q(c)i,j and worker

w’s model as p(c)w , r(c)w . Then the parameter change for iteration c and c− 1 is de-

noted as τ(c), i.e., the sum of average differences in truth and workers’ models:

τ(c) =
∑i,j |q

(c)
i,j − q(c−1)

i,j |
∑n

i=1 |Li|
+

∑w(|p
(c)
w − p(c−1)

w |+ |r(c)w − r(c−1)
w |)

|W| .

We vary c ∈ [2, 50] and compute τ(c) for all datasets in Figure 6.5(b), which

shows that τ(c) becomes much smaller as c increases. Especially, for all datasets,

we have τ(c) ≤ 10−3 as c ≥ 20. Take a further step, in Figure 6.5(c) we show

the quality (F-score) based on the computed truth in each iteration, which can be

seen that the quality improves with the increasing c. In particular, the quality

achieves highest and remains stable for different datasets as c ≥ 20. Thus it is

quick to converge (≤ 20 iterations).

Label Correlations. In Figure 6.5(d), we observe the effect of varying label cor-

relation parameter α in Equation 6.7. α ∈ [0, 1] measures the impact of Si,j (itself)

and related labels. A larger α means more impact on Si,j and a smaller α means

more impact on related labels. We vary α ∈ [0, 1] and observe the quality of all

datasets in Figure 6.5(d). It can be seen that either α close to 1 or 0 results in a

smaller quality, as it is not wise to totally agree with Si,j or related labels. We

observe that the quality achieves highest as α ∈ [0.6, 0.7] for all datasets, which

gives Si,j more impact, but at the same time considers related labels. Thus we

234 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

0%

20%

40%

60%

80%

100%

Precision Recall F1-score

(a) Image Tagging (no QC)

60%

70%

80%

90%

100%

Precision Recall F1-score

(b) Image Tagging (with QC)

0%

20%

40%

60%

80%

100%

Precision Recall F1-score

(c) Email Tagging (no QC)

0%

20%

40%

60%

80%

100%

Precision Recall F1-score

(d) Email Tagging (with QC)

MV CDAS DS Comet Comet+

Figure 6.6: Truth Inference (Effectiveness Comparisons).

choose the parameter α as 0.7.

Comparisons

Effectiveness. Figure 6.6 shows both one-sided quality (Precision and Recall)

and two-sided quality (F-score) for all 4 datasets. We can observe that (1) our

proposed approaches perform much better on datasets with no QC, where

Comet and Comet+ lead other competitors for more than 20%. As can be seen

from Figures 6.6(a)(c), MV, CDAS and DS attain much higher Precision compared

with Recall, resulting in low F-score. The reason is that low-quality workers still

have high Accuracy and TNR, thus the methods will highly trust a poor worker’s

N vote for a pair, and the label will be selected by the methods only if multiple

Y votes are given to the pair, resulting in the limited number of selected labels.

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 235

However, Comet can learn workers’ diverse characteristics and make reason-

able decisions, resulting in a high F-score (with balanced Precision and Recall).

(2) For datasets with QC, Comet (Comet+) can also outperform state-of-the-arts

on email tagging dataset. Even in the case that workers are of high qualities,

especially for image tagging (can be seen in Figure 6.4(b)), we can still have

marginal improvement. (3) By considering label correlations, Comet+ improves

Comet a lot on email tagging. However, there is not much improvement on im-

age tagging. The reason is that labeling an image is much easier. Based on the

ground truth, we further analyze image tagging, finding that most of the strong

label correlations are caught by the results of Comet (computed purely based on

workers’ answers), and there are only < 20 pairs that can be further benefited

by considering M(·), resulting in Comet+’s limited improvement. However,

email tagging tasks are more difficult for workers and most of the label cor-

relations are not caught by Comet (e.g., the high value of M(·) on ‘California

energy crisis’ and ‘company business&strategy’). Similarly, we analyze the re-

sults of Comet on email tagging, finding that there are > 200 pairs that can be

further benefited by consideringM(·), thus Comet+ can improve a lot in qual-

ity compared with Comet.

Efficiency. We compare the execution time in Figure 6.7. Given that truth in-

ference can be addressed off-line, we can observe that all methods are efficient.

To be specific, they all can be finished within 1.5s. MV and CDAS are more ef-

ficient as they do not need many computations; DS and Comet adopt iterative

approaches which require more computations; Comet+ considers label correla-

tions in the iterative approach, which is the least efficient. We will evaluate the

scalability of Comet+ on simulated data.

6.7.4 Task Assignment

We evaluate the effectiveness and efficiency of Comet’s task assignment

(Section 6.6). As existing works [27,127,222] that study task assignment focuses

236 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

 0

 0.5

 1

 1.5

 2

no QC with QC

T
im

e
 (

s
e

c
)

(a) Image Tagging

 0

 0.5

 1

 1.5

 2

no QC with QC

T
im

e
 (

s
e

c
)

(b) Email Tagging

MV CDAS DS Comet Comet+

Figure 6.7: Truth Inference (Efficiency Comparisons).

20%

40%

60%

80%

$0 $3 $6 $9

F
1-

sc
or

e

Consumed Budget (B)

(a) Image Tagging

Comlet
Least-First

Random
20%

30%

40%

50%

$0 $3 $6 $9

F
1-

sc
or

e

Consumed Budget (B)

(b) Email Tagging

Comlet
Least-First

Random

Figure 6.8: Task Assignment (Effectiveness Comparisons).

on single-label tasks, and they are not straightforward to extend to multi-label

tasks. Thus we compare with two baseline assignment strategies for multi-label

tasks. (1) Random: it randomly selects k tasks; (2) Least-First: it selects k tasks

that have been assigned least times.

We use two datasets (image tagging and email tagging) and perform exper-

iments on AMT [1] with quality control as specified in Section 6.7.1. For each

dataset, we pay $0.01 for a worker upon answering a task, and we set the total

budget as $9. That is, each dataset can collect 900 answers (i.e., 900×20 votes)

from workers. When a worker comes, we select k = 3 tasks and batch them in

a HIT for the coming worker. To control the effect of workers, for one dataset,

we perform 3 experiments on AMT in parallel, where each one uses a specific

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 237

assignment strategy.

Effectiveness. We compare the effectiveness of different assignment strategies

in Figure 6.8. For a fair comparison, we use Comet’s truth inference method

for all assignment strategies. For each dataset, we compute the quality as the

budget (denoted as B) is varied from $0 to $9. It can be seen that Comet outper-

forms both Least-First and Random. We can also observe in Figures 6.8(a)(b) that

Least-First and Comet perform nearly the same in the beginning (B ∈ [$0, $3]),

and the reason is that at first the two algorithms will typically assign all 300

tasks in the dataset to workers. However, Random performs bad in the begin-

ning, as it chooses tasks randomly, which may select some tasks multiple times

while leaving a few tasks not selected. As B increases, Comet can measure the

reduction in uncertainty when selecting tasks, thus gradually outperforming

other competitors. We can also see that when the budget is consumed (i.e.,

B = $9), Comet leads more than 5% compared with the best of other competi-

tors, and the quality comparison result can be generally summarized as follows:

Comet>Least-First>Random.

Efficiency. We also test the task assignment efficiency for three strategies. For

each dataset, we record the worst-case assignment time in all its assignments.

In our results, we find that the assignment process of all the methods can be

finished within 0.03s. Comet is the least efficient, as it computes the uncertainty

reduction for each task, and chooses k tasks with the highest reduction in un-

certainty; Least-First needs to decide the tasks that are answered with the least

times, which is more expensive than Random.

6.7.5 Scalability on Simulated Data

We evaluate the scalability of truth inference and task assignment on simu-

lated data. For statistical significance, we repeat each experiment for 1000 times

and record the average time.

238 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

Truth Inference. In Figure 6.9(a), we evaluate the scalability of Comet’s truth

inference method (Algorithm 12). We generate n tasks, where each |Li| = 20. We

then generate |W| workers, where each task is assigned to 5 randomly selected

workers (fromW), and workers’ answers are randomly generated. We vary n ∈
[0, 104], |W| ∈ {10, 100, 500} and run truth inference on randomly generated

workers’ answers. It can be seen from Figure 6.9(a) that (1) for a fixed |W|,
the time linearly increases with n; when n is big enough (e.g., 104), the time is

within 70s, which is efficient (as the truth inference can be done off-line). (2)

For a fixed n, the time does not change with varying |W|. It may contradict to

the complexity, i.e., O(c · |W| · ∑n
i=1 |Li|). However, it is an upper bound, and

we make further analysis to explain it: for a fixed budget, a larger |W| means

the participation of more workers, thus the average number of tasks a worker

has answered is smaller, leading to the fact the computation for each worker is

smaller. This may explain why the time is invariant with |W| in practice.

Task Assignment. In Figure 6.9(b), we evaluate the scalability of Comet’s as-

signment strategy (Section 6.6). We generate n tasks, where each |Li| = 20. Then

we randomly generate each qi,j ∈ [0, 1], and randomly generate the coming

worker w’s quality pw ∈ [0, 1], rw ∈ [0, 1]. We vary n ∈ [0, 104], k ∈ {10, 50, 100},
and run Comet to assign k tasks for worker w, and record the time. It can be

observed in Figure 6.9(b) that (1) for a fixed k, the time linearly increases with

n, corresponding to the complexity O(∑n
i=1 |Li|); (2) for a fixed n, the time does

not change if k varies, because after we compute the uncertainty reduction of

each object, we can use the PICK algorithm [26] to select top-k objects, which is

invariant with k.

6.8 Related Works

Since we have reviewed most of the related works of crowdsourcing in

Chapter 2, this section only highlights the part related to multi-label tasks.

CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM 239

 0

 20

 40

 60

 80

0 2.5X10
3

5X10
3

7.5X10
3

1X10
4

T
im

e
 (

s
e
c
)

Number of Tasks (n)

(a) Truth Inference

10 workers
100 workers
500 workers

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2.5X10
3

5X10
3

7.5X10
3

1X10
4

T
im

e
 (

s
e
c
)

Number of Tasks (n)

(b) Task Assignment

k=10
k=50

k=100

Figure 6.9: Scalability on Simulated Data.

In machine-learning field, multi-label tasks have been widely studied [24,

210, 213] and applied to many applications, e.g., text categorization [42], bioin-

formatics [22]. They take features of objects as input, and train a classifier based

on the training data. Different from them, we address it in crowdsourcing, i.e.,

the truth is inferred based on workers’ answers. Furthermore, the label correla-

tions provided by [24,210,213] can better facilitate our truth inference. In crowd-

sourcing, multi-label tasks are addressed [149, 222] based on transforming each

task to many independent single-label tasks, which will incur more latency and

budget [51]. Although some recent works [56, 145, 147, 149, 198] focus on pub-

lishing multi-label tasks to crowdsourcing platforms, however, this problem is

not well addressed and different characteristics of workers are not well cap-

tured. Our worker model can better capture a worker’s quality in answering

multi-label tasks. We also consider label correlations and online task assign-

ment. Note that there are also some other crowdsourcing works [29, 39, 51, 89]

on multi-label tasks, but with different objectives, e.g., [29, 39] study how to

build a taxonomy tree for an item, and [89] addresses to label POI (points of

interest) in spatial crowdsourcing.

240 CHAPTER 6. A MULTI-LABEL TASK CROWDSOURCING SYSTEM

6.9 Chapter Summary

In this chapter, we focus on image tagging application, and generalize to

the study of multi-label tasks. To be specific, we examine two fundamental

problems about multi-label tasks: Truth Inference Problem and Task Assignment

Problem. In the first problem, we model a worker as Precision and Recall, and

develop an iterative approach that captures the relations between truth and

workers’ qualities. We further incorporate label correlations in computing the

truth. In the second problem, when a worker comes, we select the tasks whose

uncertainty can be reduced the most for the worker. We perform experiments

both on real-world datasets and simulated data, verifying that our proposed

approaches are robust, outperforming existing methods with various workers,

and also scalable to large datasets.

In future work, we plan to study the following directions: (1) we will study

different User Interfaces (UIs) of multi-label tasks, and the relations among the

number of labels, quality, and latency, etc; (2) we will also consider the fre-

quency and importance of labels, e.g., the TF-IDF frequency of labels selected

by workers, and also the preference of labels indicated by requests; (3) in our ex-

periments, we assume that a small sample of data with ground truth are known

in advance, which are used to obtain the correlation matrix; thus it will be an

interesting future work to study the case if no ground truth is known in ad-

vance. (4) in image tagging application, each task and the candidate labels may

be related to different domains, thus we will see whether capturing the domain

information (will be discussed in the next chapter) can benefit such application.

In next chapter, we will study how to apply the techniques in task assign-

ment and truth inference to another application, i.e., question answering ap-

plication. To be specific, the tasks are of diverse domains and workers have

diverse qualities over various domains. Thus it is of utter importance and also

challenging to consider the domain aware worker model and task model to the

design of task assignment and truth inference components.

241

Chapter 7

A Domain-Aware Task

Crowdsourcing System

7.1 Introduction

To tackle complex tasks that are hard for computers (e.g., entity resolu-

tion [192, 199] and sentiment analysis [127, 222]), many crowdsourcing plat-

forms (e.g., Amazon Mechanical Turk (AMT) [1] and CrowdFlower [5]) have

been recently deployed. These platforms allow tasks to be performed by a

huge number of Internet users (or workers) with different backgrounds. The

increase in the importance of crowdsourcing has attracted a lot of research at-

tention [27, 47, 48, 63, 70, 88, 89, 116, 214, 219, 222].

However, workers may yield low quality and a core problem in crowd-

sourcing is to infer high-quality results from the workers’ answers. Different

workers may have diverse qualities, and it is important to accurately model a

worker’s quality. An effective worker model can benefit many important prob-

lems in crowdsourcing and we examine three crucial aspects addressed in ex-

isting works [27,47,48,63,70,131,219,222] that help to infer high-quality results:

242 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

• Worker Model: How to represent the quality of a worker that effectively re-

flects her skills? Existing works simply treat it as a real value [48, 70, 219] or a

matrix [47, 222].

• Truth Inference: How to obtain the true answer (called truth) of a task? To

improve the quality, a task may be performed by one or more workers, and

thus an important issue is to infer the truth through aggregating workers’ an-

swers [47, 48, 63, 131].

• Task Assignment: How to assign a task to appropriate workers? As pointed

out by [27, 63, 222], this is often done based on worker model, which reflects

her performance statistics shown in her previous tasks. Note that the assign-

ment latency is crucial and online task assignment is required to achieve instant

assignment.

A common drawback of existing solutions (e.g., solutions in Chapters 3-5)

is that they often overlook the worker’s ability in different aspects (or domains).

As a matter of fact, in specific applications, e.g., question answering, workers

may have a variety of expertise, skills, and cultural backgrounds; tasks may

also be related to different domains, which we call domain-aware tasks. Let us

consider two workers (A, an NBA fan, and B, a frequent moviegoer) and two

tasks t1 and t2 (which ask workers to select labels of two photos about Stephen

Curry and Leonardo DiCaprio, respectively). Intuitively, A should do better than

B in the sports domain, while B is a better candidate than A in doing tasks related

to films. Thus, t1 and t2 should be assigned to A and B respectively. However,

existing works often neglect the domain information (e.g., the qualities of A and

B are modeled as the same values for different tasks [48, 70, 219]).

The issues of incorporating domain knowledge in the crowdsourcing pro-

cess have only been recently studied [63, 131], where each worker has diverse

qualities on different domains. These solutions, while promising, still have

room for improvement:

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 243

• Worker Model: [63] examines the issues of inferring domains of workers and

tasks. The solution relies on the text descriptions of tasks – tasks with large text

similarity have a higher chance to be classified into the same domain. However,

this solution can result in wrong domain classification. For example, the two

tasks “Is Stephen Curry a PF?” and “Has Golden State Warriors ever won champi-

onships?” may not be similar (e.g., in terms of Jaccard similarity), yet they are in

the sports domain. On the other hand, tasks “Compare the height of Stephen Curry

and Kobe Bryant.” and “Compare the height of Mount Everest and K2.” may have a

high text similarity, but they are in different domains (i.e., sports and mountains,

respectively). In [131], machine-learning techniques are used to compute latent

domains of tasks. However, due to the lack of semantics, these latent domains

are hard to interpret, making it difficult to profile and understand a worker’s

ability.

• Truth Inference: In [63, 131], the problem of using domain information to in-

fer truth has been studied. Typically they exploit a worker’s diverse qualities

on different domains, and then for a task, it will trust a worker’s answer if the

worker has high qualities on the domains in that task. However, the work-

ers’ qualities are either inaccurately estimated [131], or incorrectly leveraged to

compute each task’s truth [63]. For example, [131] estimates each task’s latent

domains and each worker’s quality for those latent domains together, thus the

estimation of worker’s quality is highly affected by the inaccurate estimation

of task’s domains; [63] uses the weighted majority voting to infer each task’s

truth, which is easy to be misled by the answers given by multiple low-quality

workers.

• Task Assignment: The only work that uses domain information in task assign-

ment is [63]. However, it adopts a fairly simple task assignment method, in

which each task is assigned to the same number of workers, and the difficulty

level of a task is not considered. Moreover, it assigns tasks to a worker such

that the worker has the highest qualities to accomplish, which omits the fact the

244 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

assigned tasks may have already obtained confident and consistent answers.

Hence, there is a need of investigating how to make the best use of do-

main information in the crowdsourcing process. Our goal is to study an effec-

tive method of utilizing domain information to enhance the effectiveness of the

three steps above. The main idea is to consult an existing knowledge base (or

KB), such as Wikipedia [201] and Freebase [71] for obtaining domain informa-

tion. These KBs are often associated with a large number of categories/topics

information, organized in a systematic and hierarchical manner. For example,

Freebase [71] contains over 57M concepts, encoded by 3G facts. We have devel-

oped a DOmain-Aware Crowdsourcing System, called DOCS, which taps into

this large pool of information, learning the domains of workers and tasks more

explicitly.

Figure 7.1 shows the architecture of DOCS, which contains three main

modules: Domain Vector Estimation (DVE), Truth Inference (TI) and Online

Task Assignment (OTA). A requester (who publishes tasks) can specify a set

of tasks (with text descriptions) and a budget in DOCS. Then DOCS interacts

with knowledge bases and crowdsourcing platforms, respectively. Finally after

consuming the budget, the inferred truth for all tasks are returned to the re-

quester. Next, we show how the three modules in DOCS work upon receiving a

requester’s tasks.

• DVE. This module is responsible for estimating the related domains of each

task, based on the domain information in a KB. Specifically, an “entity-linking”

algorithm [168] can be used, which extracts entities from the text description of

each task. A domain vector is then computed for these entities, in order to capture

how likely a task belongs to each domain mentioned in a KB.

After computing each task’s domain vector, the tasks are published to

crowdsourcing platforms (e.g., AMT [1]). By interacting with the crowd work-

ers, in general, DOCS needs to handle two types of requests from workers: (1)

a worker accomplishes tasks and submits answers; (2) a worker comes and re-

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 245

TI: Truth

Inference

DOCS

Crowdsourcing Platforms (e.g., AMT)

tasks

Requester(s)

all workers’ answers for tasks

inferred truth for all tasks

2

3

4

5

tasks (domain vector)

DB workers (worker ID, quality vector)

DVE: Domain

Vector

Estimation

2

OTA!"Online Task

Assignment

inferred truth

worker tasksworker’s answers

4 5 3 522

Knowledge Bases

(e.g., Freebase)

1

1 tasks (with text description)

3 4 1

Figure 7.1: The Architecture of DOCS.

quests tasks.

• TI. When a worker accomplishes tasks and submits answers, the module first

stores the worker’s answers into database and then infers each task’s truth and

each worker’s model based on two principles: (1) a worker’s answer is trusted,

if she is a domain expert on her submitted tasks; and (2) a worker is a domain

expert if she often correctly answers tasks related to that domain.

• OTA. When a worker comes and requests new tasks, this module assigns

tasks to her. A poor assignment may not only waste budget and time, but also

hurt the quality of inference results which depend on workers’ answers. To

judiciously assign tasks, the module makes decisions based on three factors: (1)

the worker’s quality, (2) the domain vectors of tasks, and (3) how confident each

task’s truth can be inferred from previously received answers. Intuitively, we

assign a task to the worker if the task’s domains are the worker’s expertise and

its truth cannot be confidently inferred. The assignment is done online, i.e., tasks

will be assigned to the worker instantly.

246 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

However, designing the three modules above is not straightforward. We

technically address the above challenges as follows:

For DVE, although we can extract entities from a task based on existing

entity linking algorithm [168], ambiguities exist when we link each extracted

entity to real-world concepts (e.g., pages in Wikipedia). For example, the en-

tity Michael Jordan can either refer to the famous basketball player (https://

en.wikipedia.org/wiki/Michael_Jordan), or the computer scientist (https:

//en.wikipedia.org/wiki/Michael_I._Jordan) in Wikipedia. Suppose there

are u entities in a task, and each entity can be linked to 3 concepts, then there

are 3u possible linkings from the entities to concepts, which is exponential. Thus

deriving a domain vector for a task in a straightforward way involves aggregat-

ing an exponential number of such linkings. We propose an algorithm that can

reduce the complexity from exponential to polynomial (Section 7.3).

For TI, it is challenging to infer each task’s truth correctly, as it highly de-

pends on workers’ qualities (which are unknown). Intuitively, we exploit the

inherent relations between workers’ qualities and tasks’ truth, and finally de-

vise an iterative approach that collectively infers those parameters. We also

study how to maintain each worker’s quality in the long run and devise update

policies for the incremental inference algorithms (Section 7.4).

Finally, for the OTA module, we have studied how to use the three factors

above (that affect task assignment), in order to estimate the benefit of assigning

each task to the worker, by considering if the task is answered by the worker;

then we assign a set of k tasks that attain the highest benefits. There are several

challenges. (1) How to define the benefit function? (2) How to estimate the

answer given by the worker? (3) Typically for better user interaction, a set of

k tasks (e.g., k = 20 in [195, 222]) will be batched together and assigned to the

worker. To select the optimal k tasks out of all (say, n) tasks, there are (n
k) possible

combinations that have to be considered, then how to efficiently compute the

optimal assignment? We have developed an optimal and linear algorithm to

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 247

support this complex assignment process (Section 7.5).

To summarize, our main goal is to study the impact of using domain knowl-

edge in the crowdsourcing process. We further examine how to use a knowl-

edge base (KB) to realize this goal. We examine how to use a KB effectively and

efficiently in the three key procedures of crowdsourcing, namely, (1) domain

vector estimation (DVE), (2) truth inference (TI), and (3) online task assignment

(OTA). To our understanding, no previous work has examined the use of do-

main knowledge in such a comprehensive manner. We present a simple archi-

tecture to integrate these processes, and our extensive experiments show that

our solution outperforms state-of-the-art methods, i.e., [27, 47, 48, 63, 131, 222].

7.2 Data Model

Definition 7.1 (Domain). Let D = {d1, d2, . . . , dm} denote the domain set with

|D| = m domains.

An example domain set is D ={politics, sports, films}. The domain set

is used to interpret tasks and profile workers, which can be obtained by

existing knowledge bases or question answering systems, e.g., main topics

in Wikipedia [201], domains in Freebase [71], or categories in Yahoo An-

swers [204]. The reason for using general topics is that they can interpret a task

and profile a worker in a fine-grained manner. We record the worker’s familiar

domains, which can be further used when the same worker comes in the future.

Definition 7.2 (Task, Domain Vector). A requester publishes n tasks, denoted as

T = {t1, t2, . . . , tn}. Each task ti ∈ T has a text description, followed by `ti possible

choices. Each task ti is modeled as a domain vector rti = [rti
1 , rti

2 , . . . , rti
m], where

each rti
k ∈ [0, 1] (1 ≤ k ≤ m) and ∑m

k=1 rti
k = 1. The domain vector rti represents the

distribution that task ti is related to each domain in D. A higher value of rti
k means that

task ti is more related to domain dk.

In this chapter, we focus on multiple-choice tasks. Now let us consider a

task t1: “Did Michael Jordan win more NBA championships than Kobe Bryant?”, and

248 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

Table 7.1: Workers’ Qualities and Answers for Task t1.
Worker Worker’s Quality Worker’s Answer for Task t1

w1 qw1 = [0.3, 0.9, 0.6] vw1
1 = 1 (‘yes’)

w2 qw2 = [0.9, 0.6, 0.3] vw2
1 = 2 (‘no’)

w3 qw3 = [0.6, 0.3, 0.9] vw3
1 = 2 (‘no’)

the same D as above. The task has `t1 = 2 choices: {yes, no}. From the text

description we know that the task is related to domains sports and films in D
(note that Michael Jordan starred in the film “Space Jam” in 1996), and it is more

relevant with sports, thus a reasonable domain vector for t1 is rt1 = [0, 0.78, 0.22]

(we will show how to compute it in Section 7.3). We use bold font to represent

a vector (e.g., rt1) and the symbol | · | to get the size of a vector or set (e.g.,

|rt1 | = |D| = m).

Definition 7.3 (Worker, Quality Vector). LetW denote the worker set. Each worker

w ∈ W is modeled as a quality vector qw = [qw
1 , qw

2 , . . . , qw
m], where each qw

k ∈ [0, 1]

indicates the expertise (accuracy) of worker w in answering tasks in domain dk (1 ≤
k ≤ m). A higher value qw

k means that worker w has more expertise on domain dk.

Considering the same D above, if worker w is an enthusiastic sports-fan

and movie-goer, while pays no attention to politics, then a proper quality vector

for w is qw = [0.3, 0.8, 0.8]. Note that a worker can be an expert in multiple

domains.

Definition 7.4 (Answer, Truth). Workers can come to the DOCS and answer tasks.

Let `ti denote the number of possible answers for task ti, and vw
i denote the answer

given by worker w for task ti, i.e., 1 ≤ vw
i ≤ `ti . We assume that a worker can answer

a task at most once. Each task ti has a (ground) truth, or true answer, denoted as v∗i
(1 ≤ v∗i ≤ `ti).

For the above example task t1 and `t1 = 2, suppose three workers (w1, w2

and w3) give their answers in Table 7.1: vw1
1 = 1 (yes), and vw2

1 = vw3
1 = 2 (no).

The truth of t1 is v∗1 = 1 (as Michael won 6 championships while Kobe won 5). Note

that the truth v∗1 is unknown to us and we infer v∗1 based on workers’ answers.

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 249

Table 7.2 summarizes the notations used in the chapter.

Table 7.2: Notations Used in Chapter 7.
Notation Description

domains and tasks
m the number of domains (m = 26 in DOCS)
di the i-th domain (1 ≤ i ≤ m), D = {d1, d2, . . . , dm}
ti the i-th task (1 ≤ i ≤ n), T = {t1, t2, . . . , tn}
rti domain vector for task ti ∈ T , rti = [rti

1 , rti
2 , . . . , rti

m]

entities and concepts (w.r.t. each entity) for a task t
ei the i-th entity for a task t, and Et = {e1, e2, . . . , e|Et|}
c c = max1≤i≤|Et| |pi| (c = 20 in DOCS)
pi the distribution of concepts for entity ei (1 ≤ i ≤ |Et|)
hi,j the indicator concept vector (size m) for j-th concept in ei

workers, answers, and truth
W the set of workers, where each worker w ∈ W
qw worker w’s quality vector, qw = [qw

1 , qw
2 , . . . , qw

m]

vw
i worker w’s answer for task ti, and 1 ≤ vw

i ≤ `ti

V(i) the set of workers’ answers for task ti, i.e., V(i) = {vw
i }

T (w) the set of tasks answered by worker w, i.e., T (w) = {ti}
v∗i truth for task ti (1 ≤ i ≤ n) and 1 ≤ v∗i ≤ `ti

7.3 Domain Vector Estimation

We propose a two-step framework to compute rt for task t.

Step 1: Extracting Entities, Concepts, and Indicator Vectors. Based on the ad-

vances in information retrieval [38, 159, 168, 178], we can leverage existing “en-

tity linking” techniques [168] to detect entities in a task. Each detected entity

can be linked to a set of possible concepts, which forms a probability distribu-

tion where each concept is associated with a probability that indicates the link

from entity to concept is correct (by considering the semantic meanings in the

text). For each concept, we can then use the hierarchical structure of a knowl-

edge base to compute an indicator vector, expressing the domains in D that are

250 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

Table 7.3: The Information Generated for Task t.
Entity Concept (Page in Wikipedia) Prob. Indicator Vector

e1: Michael Jordan
Michael Jordan p1,1 = 0.7 h1,1 = [0, 1, 1]

Michael I. Jordan p1,2 = 0.2 h1,2 = [0, 0, 0]
Michael B. Jordan p1,3 = 0.1 h1,3 = [0, 0, 1]

e2: NBA
National Basketball Association p2,1 = 0.8 h2,1 = [0, 1, 0]

National Bar Association p2,2 = 0.2 h2,2 = [0, 0, 0]
e3: Kobe Bryant Kobe Bryant p3,1 = 1.0 h3,1 = [0, 1, 0]

Note: the concept can be redirected to the corresponding wikipedia page by adding
the prefix “https://en.wikipedia.org/wiki/”. For example, “Michael Jordan”
corresponds to the url “https://en.wikipedia.org/wiki/Michael_Jordan”.

related to the concept.

We use the task t1 (denoted as t in this section) and D in Section 7.2

as an example. Table 7.3 shows the generated information. We denote

Et = {e1, e2, . . . , e|Et|} as the set of detected entities for task t, e.g., |Et| = 3 and

e1 = Michael Jordan. For an entity ei ∈ Et, the distribution of all its possible correct

concepts is denoted as pi = [pi,1, pi,2, . . . , pi,|pi|], where each pi,j (1 ≤ j ≤ |pi|)
is the probability that the link from ei to its j-th concept is correct. For example,

for e2 (NBA), we get p2 = [0.8, 0.2] for its two concepts. For the j-th concept in ei,

the computed indicator vector is denoted as hi,j = [hi,j,1, hi,j,2, . . . , hi,j,m], where

each hi,j,k = 1 (0) means that the j-th concept in ei is related (unrelated) to do-

main dk. For example, as Michael B. Jordan is an American actor, thus it is only

related to domain films (i.e., d3), and h1,3 = [0, 0, 1].

Step 2: Computing Domain Vector. We aggregate all entities of a task to com-

pute its domain vector, by considering the correctness probability from an entity

to a concept and the indicator vector of each concept in an entity. However, it is

prohibitively expensive to compute the best domain vector (see Section 7.3.1).

7.3.1 Challenges in Computing Domain Vector

For a task t, based on step 1 we have all detected entities Et, the distribution

pi of concepts for an entity ei, and each concept’s indicator vector hi,j. To com-

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 251

pute the domain vector rt, we consider all correct linkings between entities and

concepts. For example, in Table 7.3, one possible linking from the three entities

in Et to concepts is: e1–“Michael B. Jordan”, e2–“National Basketball Association”,

e3–“Kobe Bryant”. The correctness of the linking is p1,3 · p2,1 · p3,1 = 0.08. Un-

der this linking, the aggregated indicator vector is h1,3 + h2,1 + h3,1 = [0, 2, 1],

which counts the number of related concepts in each domain, by considering all

entities in task t. As the domain vector is a distribution, it is then normalized

as h1,3+h2,1+h3,1
∑m

k=1(h1,3,k+h2,1,k+h3,1,k)
= [0, 2

3 , 1
3]. From the above analysis, we know that for

a possible linking, we can derive its corresponding correctness probability and

normalized vector.

For ease of presentation, we use π = [π1, π2, . . . , π|Et|] to denote a possible

linking, which means that ei (1 ≤ i ≤ |Et|) is linked to the πi-th possible concept

of ei. For example, the above linking corresponds to π = [3, 1, 1]. Let Ω = {π}
denote a set containing all possible linkings, so |Ω| = ∏|Et|

i=1 |pi|. In this chapter,

we assume the entity is linked into different concepts independently. We will

consider the issues of correlation among concepts in the future. Then for each

linking π ∈ Ω, we can derive its corresponding correctness probability Pr(π) =

∏|Et|
i=1 pi,πi and normalized vector vπ = (∑|Et|

i=1 hi,πi)/(∑
m
k=1 ∑|Et|

i=1 hi,πi ,k). As the

normalized vector vπ is a distribution that reflects the degree of relatedness

of task t to each domain w.r.t. the linking π, thus by considering all possible

π ∈ Ω, we define the domain vector rt as the expected normalized vector, i.e.,

rt = ∑
π∈Ω

vπ · Pr(π) = ∑
π∈Ω

∑|Et|
i=1 hi,πi

∑m
k=1 ∑|Et|

i=1 hi,πi ,k

·
|Et|

∏
i=1

pi,πi . (7.1)

Take the example in Table 7.3. By enumerating all possible π ∈ Ω (|Ω|=3 ·
2 · 1=6) as Equation 7.1, the domain vector is computed as rt = [0, 0.78, 0.22].

However, directly computing rt via Equation 7.1 is expensive. Let c =

max1≤i≤|Et| |pi|, i.e., the maximum number of concepts in all entities, then it

takes O(|Ω| · |Et| ·m) = O(c|Et| · |Et| ·m) time, which is exponential.

252 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

7.3.2 Our Solution

We devise our solution in Algorithm 14, which computes the domain vec-

tor accurately by reducing the complexity from O(c|Et| · |Et| · m) (exponential)

to O(c ·m2 · |Et|3) (polynomial). The basic idea is that although the number of

possible linkings (|Ω|) is exponential, the number of possible normalized vec-

tors is bounded. For example, for the k′-th element in the normalized vector,

i.e., (∑|Et|
i=1 hi,πi ,k′)/(∑

m
k=1 ∑|Et|

i=1 hi,πi ,k), as each h∗,∗,∗ ∈ {0, 1}, if we consider its nu-

merator and denominator respectively, there are at most (|Et|+ 1) · (m · |Et|+ 1)

possible values for that element. This inspires us to compute rt from the per-

spective of normalized vectors in Algorithm 14.

To be specific, Algorithm 14 takes m iterations, where for the k-th iteration

(lines 5-24), it computes the k-th element of rt, i.e., rt
k. To achieve this, we use

a hash-map (M), whose keys are the possible (numerator, denominator) combi-

nations (denoted by (nm,dm)), and the corresponding value for a key (nm,dm)

is the aggregated probability for nm/dm. In order to compute rt
k, we consider

each entity iteratively. In the i-th iteration (lines 7-17), it derives an M, whose keys

are the possible (nm,dm) by considering the first i entities (i.e., from e1 to ei). In

doing so, we leverage the derived M in last iteration (i.e., considering the first

i – 1 entities) and directly applies the pi and hi,∗ of the i-the entity ei to generate

a new temporary hash-map tmpM. To be specific, for each key (nm,dm) in M, it is

updated based on concepts in ei: for the j-th concept, the key (nm,dm) becomes

new key (nm+hi,j,k, dm+xi,j), note xi,j = ∑m
k=1 hi,j,k, which is initially stored in

line 1, and the value (or aggregated probability) is multiplied by pi,j and added

to the value of new key in tmpM. At last tmpM is assigned to M for the next iteration

(line 17). After all entities are considered (|Et| iterations), we can finally use the

information in the derived M to compute rt
k. (lines 19-24).

Running Example. Figure 7.2 shows how to compute rt
2 in Table 7.3. The i-th

layer shows the derived M after considering ei. We use ‘key:value’ to represent

each data in the hash-map. Initially for i = 1 (e1), its three concepts (with p1,

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 253

Algorithm 14 Domain Vector Computation (Chapter 7).
Input: Et, pi (1 ≤ i ≤ |Et|), hi,j (1 ≤ i ≤ |Et|, 1 ≤ j ≤ |pi|)
Output: rt

1: xi,j = ∑m
k=1 hi,j,k for 1 ≤ i ≤ |Et|, 1 ≤ j ≤ |pi|; // pre-computation

2: rt = [0, 0, . . . , 0]; // a vector of size m with all 0 elements
3: M = hash-map(); // we use M[key] to visit the value of the key (a 2-tuple)
4: for k = 1 to m (iterate over all domains) do
5: M[(0, 0)] = 1; // initialize the hash-map M

6: for i = 1 to |Et| (iterate over all entities) do
7: tmpM = hash-map(); // another hash-map, similar to M

8: for (nm, dm) ∈ M (iterate over all keys in M) do
9: value = M[(nm, dm)]; // get the value of the key: (nm,dm)

10: for j = 1 to |pi| (iterate over all concepts for entity ei) do
11: if (nm + hi,j,k, dm + xi,j) /∈ tmpM then
12: tmpM[(nm + hi,j,k, dm + xi,j)] = 0;
13: end if
14: tmpM[(nm + hi,j,k, dm + xi,j)]+ = value · pi,j;
15: end for
16: end for
17: M = tmpM; // assign tmpM to M for next iteration
18: end for
19: for (nm, dm) ∈ M (iterate over all keys in M to compute the value of rt

k) do
20: if dm 6= 0 then
21: rt

k + = (nm/dm) · M[(nm, dm)]; // aggregate the value of rt
k

22: end if
23: end for
24: end for
25: return rt;

h1,∗) form M. For e2, based on the derived M in last iteration, it is updated to a

new one. For example, (1, 2):0.7 is updated to (1+h2,1,2, 2+x2,1):0.7·p2,1=(2,3):0.56

and (1+h2,2,2, 2+x2,2):0.7·p2,2=(1,2):0.14. Moreover, as (0,1):0.1 can also be sim-

ilarly updated as (1,2):0.08, thus the value for the key (1,2) is aggregated as

0.14+0.08=0.22. After all 3 entities are considered, rt
2 = 0.78 is finally derived

based on the final M. Following this, we can compute rt = [0, 0.78, 0.22].

Time Complexity of Algorithm 14. First the calculation of x∗,∗ takes O(c · m ·
|Et|) time, where c = max1≤i≤|Et| |pi|. Then it computes each element in rt

iteratively. To compute a rt
k (1 ≤ k ≤ m), we iteratively consider |Et| entities:

254 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

(0,0):1

(1,2):0.7

(0,0):0.2

(0,1):0.1

(2,3):0.56

(1,2):0.22

(0,1):0.02

(1,1):0.16

(0,0):0.04

(3,4):0.56

(2,3):0.22

(1,2):0.02

(2,2):0.16

(1,1):0.04

i=1
i=2 i=3

M M
lines 7-14

(nm,dm) : value

= —*0.56 + —*0.22 + —*0.16 + —*0.04 + —*0.02=0.78
3

34
2 2

2
1

21
1

lines 15-17

Figure 7.2: A Run of Computing rt
2.

for the i-th iteration, we leverage the already derived M to further update itself

to a new one, by considering all concepts in ei. In each iteration, as the number

of keys in M is O(m · |Et|2), then it takes O(c ·m · |Et|2). So computing a rt
k takes

O(c ·m · |Et|3), and the total time complexity of deriving rt is O(c ·m2 · |Et|3).

The Implementations of DVE in DOCS. We adopt Freebase [71], a large, re-

liable, and curated knowledge base. We construct D based on 26 domains in

Yahoo Answers [204], which consists of a wide range of topics, such as Sports,

Politics. We manually map each of the 26 domains to the respective domain(s)

in Freebase. Next we discuss how to compute Et, pi, hi,j and rt.

We use an open-source entity linking tool Wikifier [38, 159], which can de-

tect entities Et in a task t. For each entity ei, it links to the top 20 possible con-

cepts (or pages) [159], by considering features such as the frequency of the link-

ing and the string similarity between concepts and ei. Then it computes a prob-

ability distribution pi (of size 20), which indicates how probable each possible

concept is correctly linked to ei in the task. For each concept (in Wikipedia),

which can be redirected to the corresponding Freebase concept using API, we

compute the indicator vector hi,j (of size 26) by considering whether or not each

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 255

domain inD is related to the given concept in Freebase. Note that this can be ob-

tained directly from the corresponding concept page in Freebase. Finally, based

on Et, pi and hi,j (1 ≤ i ≤ |Et|, 1 ≤ j ≤ |pi|), Algorithm 14 is leveraged to

compute the task t’s domain vector rt.

7.4 Truth Inference

In this section, we study the truth inference problem. The Input of the prob-

lem includes: (1) tasks’ domain vectors (rti for 1 ≤ i ≤ n) and (2) all workers’

answers. The Output is each task’s inferred truth (and we can also derive each

worker’s quality vector). To solve it, we first introduce an iterative approach

(Section 7.4.1), and then discuss how to use it in practice (Section 7.4.2).

7.4.1 Iterative Approach

We observe that there are two kinds of relations between workers’ qualities

and tasks’ truth: (1) given a task t, if the worker’s quality values for t’s related domains

are high, then her answer is likely to be the truth for t; (2) given a worker w, if w often

answers tasks correctly related to a domain, then w has a high quality for that domain.

Based on these intuitions, we develop an iterative approach, which updates the

sets of parameters for tasks and workers until convergence is reached. Here,

we use qw to denote a worker w’s quality; si = [si,1, si,2, . . . , si,`ti
] is task ti’s

probabilistic truth, where si,j (1 ≤ j ≤ `ti) is the chance that the j-th choice is the

truth for task ti. We use V(i) to denote the set of workers’ answers for task ti.

For example, in Table 7.1, V(1) = {vw1
1 , vw2

1 , vw3
1 }. We denote oi as task ti’s true

domain. Based on the domain vector rti , we have Pr(oi = k) = rti
k .

To be specific, in our iterative approach, each iteration contains two steps:

in step 1, each task’s probabilistic truth si is inferred based on workers’ quali-

ties (qw); then step 2 reversely infers each worker’s quality based on the tasks’

probabilistic truth. It will iterate until convergence. Finally, we infer the truth

256 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

for each task ti as v∗i = arg max1≤j≤`ti
si,j (detailed algorithm can be found in

Algorithm 15). We first detail the two steps, and then analyze the Initialization

and Time Complexity, respectively.

Algorithm 15 Iterative Truth Inference (Chapter 7).

Input: workers’ answers V(i), tasks’ domain vectors rti (1 ≤ i ≤ n)
Output: truth si (1 ≤ i ≤ n), worker’s quality qw (w ∈ W)

1: Initialize qw for w ∈ W ;
2: while true do
3: // Step 1: Inferring the Truth
4: for 1 ≤ i ≤ n do
5: for 1 ≤ k ≤ m, 1 ≤ j ≤ `ti do
6: M(i)

k,j = Pr(v∗i = j | oi = k, V(i)); // Eq. 7.3 and 7.4
7: end for
8: si = rti ×M(i); // Matrix Multiplication
9: end for

10: // Step 2: Estimating Worker Quality
11: for w ∈ W do
12: Compute qw based on Eq. 7.5;
13: end for
14: // Check for Convergence
15: if Converged then
16: break;
17: end if
18: end while
19: return si for 1 ≤ i ≤ n and qw for w ∈ W ;

Step 1: Inferring the Truth (qw → si). In general, the probabilistic truth si can

be expressed by considering all domains:

si,j = Pr(v∗i = j | V(i)) = ∑m
k=1 rti

k · Pr(v∗i = j | oi = k, V(i)). (7.2)

For simplicity, we denote M(i)
k,j = Pr(v∗i = j | oi = k, V(i)). Note that M(i) is a

matrix of size m× `ti , where each rowM(i)
k,• in it represents the distribution of

truth computed for the k-th domain, then si can be computed by considering ti’s

domain vector: si = rti ×M(i) via matrix multiplication. In order to compute

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 257

M(i)
k,j , we adopt two typical assumptions used in existing works [48,127,131]: (1)

workers give their answers independently and (2) the priors are uniform (i.e.,

Pr(v∗i = j) = 1/`ti). Then we can derive

M(i)
k,j =

∏vw
i ∈V(i) Pr(vw

i | oi = k, v∗i = j)

∑
`ti
j′=1 ∏vw

i ∈V(i) Pr(vw
i | oi = k, v∗i = j′)

. (7.3)

Since there are `ti possible answers for task ti, to capture worker w’s ability, sim-

ilar to [219,222], we compute the probability that the worker answers incorrectly

(i.e., 1− qw
k) for those (`ti − 1) incorrect answers using a uniform distribution.

Let 1{·} denote an indicator function which returns 1 if the argument is true; 0

otherwise. For example, 1{2=5} = 0 and 1{5=5} = 1. Then we have

Pr(vw
i | oi = k, v∗i = j) = (qw

k)
1{vw

i =j} ·
(1− qw

k
`ti − 1

)1{vw
i 6=j} . (7.4)

This means that the probability that w answers correctly for a task with domain

k is qw
k , and likewise, the probability that w gives a specific incorrect answer for

that task is (1− qw
k)/(`ti − 1).

Running Example. We use an example to show that step 1 can satisfy the 1st

relation. We compute s1 for task t1 in Table 7.3. As the domain vector rt1 =

[0, 0.78, 0.22], and we take workers’ qualities (qw1 , qw2 , qw3) and answers (V(1))

in Table 7.1. We first compute each vectorM(1)
k,• , e.g., forM(1)

2,• = [M(1)
2,1 ,M(1)

2,2],

we deriveM(1)
2,1 =

qw1
2 (1−qw2

2)(1−qw3
2)

qw1
2 (1−qw2

2)(1−qw3
2)+(1−qw1

2)qw2
2 qw3

2
= 0.93 andM(1)

2,2 = 0.07. Sim-

ilarly we deriveM(1)
1,• = [0.03, 0.97] andM(1)

3,• = [0.28, 0.72]. Then we compute

s1,j (1 ≤ j ≤ 2) as s1,1 = ∑3
k=1 rt1

k · M
(1)
k,1 = 0.79, and similarly s1,2 = 0.21. Note

that although two workers w2, w3 answer “no” to t1, and only one worker w1

answers “yes” to t1, the computed truth s1 = [0.79, 0.21] tends to be “yes”. The

reason is that (1) the task t1 is more related to domain “sports” (0.78 in rt1), and

(2) w1 has a high quality (0.9) for domain “sports” while w2 and w3 have low

qualities (0.6 and 0.3) for it, making w1’s answer more reliable.

258 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

Step 2: Estimating Worker Quality (si → qw). We now estimate qw based

on the computed si,j in step 1. As qw
k denotes worker w’s quality for the k-th

domain, which is formally defined as the fraction of tasks in domain dk that w

has answered correctly: qw
k =

∑ti∈T
(w) 1{oi=k}·1{vw

i =v∗i }

∑ti∈T
(w) 1{oi=k}

, where T (w) denotes the set

of tasks answered by worker w, e.g., in Table 7.1, T (w1) = {t1}. However, qw
k

is hard to compute directly, as task ti’s true domain (oi) and truth (v∗i) are un-

known. Fortunately we have their probabilistic representations, which facilitate

us to compute their expected values, i.e., E[1{oi=k}] = rti
k · 1 + (1− rti

k) · 0 = rti
k ,

and similarly E[1{vw
i =v∗i }] = si,vw

i
. Then we take the expectation of the numerator

and denominator of qw
k and derive

qw
k =

(
∑ti∈T (w) rti

k · si,vw
i

)
/
(
∑ti∈T (w) rti

k

)
. (7.5)

Intuitively, qw
k is computed by considering the tasks answered by worker w. To

be specific, it considers (1) how much each answered task is related to domain

dk, i.e., rti
k ; and (2) how probable each task is answered correctly by worker w,

i.e., si,vw
i
.

Running Example. We use an example to show that step 2 can satisfy the 2nd

relation. Suppose a worker w1 answers two tasks: t1 and t2 (`t1 = `t2 = 2), both

with the first answer. Assume s1,1 = 0.95, and s2,1 = 0.3; for domain vectors, as-

sume rt1
2 = 0.9 and rt2

2 = 0.05. Then we get qw1
2 = (rt1

2 · s1,1 + rt2
2 · s2,1)/(r

t1
2 + rt2

2)

= 0.92 (Equation 7.5). Note that although w1 answers poorly for t2 (s2,1 = 0.3),

the worker’s quality for domain d2 is still very high (qw1
2 = 0.92). The reason is

that t2 is merely related to d2 (rt2
2 = 0.05); moreover, w1 answers accurately to t1

(s1,1 = 0.95), which is highly related to d2 (rt1
2 = 0.9), making qw

2 very high.

Initialization. To initialize all workers’ qualities, we can leverage each worker’s

answering performance for golden tasks (Section 7.5.2), i.e., tasks with known

ground truth, which are used to test a worker’s quality before a worker answers

real published tasks.

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 259

Time Complexity. In step 1, let ` = max1≤i≤n `ti , then for each task ti, comput-

ing each M(i)
k,j takes O(` · |V(i)|), thus this step takes O(m`2 · ∑n

i=1 |V(i)|) time

in all; in step 2, to compute each qw
k , it considers all the tasks answered by w,

thus this step takesO(m ·∑w∈W |T (w)|) = O(m ·∑n
i=1 |V(i)|). Suppose it takes u

iterations to converge, then the time complexity isO(um`2 ·∑n
i=1 |V(i)|) in total.

In practice, m and ` are constants, and u ≤ 20, thus the time complexity is linear

to the number of answers.

7.4.2 Practical Truth Inference

We now study the practical issues about how to maintain workers’ qualities

for future use, and how to accelerate truth inference.

Maintenance of Workers’ Qualities. As different requesters may publish dif-

ferent tasks to DOCS, the workers who have previously answered tasks may

come again in the future. Thus we need to maintain workers’ previous answer-

ing performance, which can be further used (e.g., initializing worker’s quality)

in tasks published by new requesters. Obviously, it is ineffective to store all

of workers’ previous completed tasks and answers. A straightforward way is

to store each worker w’s quality qw. However, this is insufficient, as each qw
k

(1 ≤ k ≤ m) is derived (Equation 7.5) based on w’s answers for tasks in domain

dk, and if w answers very few tasks related to dk, the computed qw
k is not confi-

dent. Thus besides qw
k , we also maintain another statistic uw

k , i.e., the number of

tasks w has answered that are related to dk.

Specifically, in order to update a worker w’s quality qw, e.g., qw
k (1 ≤ k ≤ m),

DOCS maintains two statistics in database: the quality qw
k and its weight uw

k ,

which is the expected number of tasks answered by w that are related to domain

dk, i.e., uw
k = ∑ti∈T (w) rti

k . Suppose worker w came to DOCS before and answered

tasks. Let q̂w
k and ûw

k (1 ≤ k ≤ m) denote two statistics stored for previous

tasks, then by considering those computed for newly answered tasks (i.e., qw
k

and uw
k for 1 ≤ k ≤ m), Theorem 7.1 states how to update these two parameters

260 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

correctly in DOCS.

Theorem 7.1 (Worker Quality Update). If qw
k and uw

k are updated as (q̂w
k · ûw

k + qw
k ·

uw
k)/(û

w
k + uw

k), and (ûw
k + uw

k), respectively, then the quality of worker w is updated

correctly.

Proof. Let T̂ (w) denote the set of tasks answered by w previously. If we con-

sider T (w), i.e., the set of newly published tasks answered by w. Then based on

Equation 7.5, the worker w’s quality qw
k (1 ≤ k ≤ m) can be updated as

q̂w
k ·∑t∈T̂ (w) rt

k + ∑ti∈T (w) rti
k · si,vw

i

∑t∈T̂ (w) rt
k + ∑ti∈T (w) rti

k

.

As ∑ti∈T (w) rti
k · si,vw

i
= qw

k ·∑ti∈T (w) rti
k , thus by introducing another statistic ûw

k =

∑t∈T̂ (w) rt
k and uw

k = ∑ti∈T (w) rti
k , we can maintain worker’s quality qw

k and uw
k as

(q̂w
k · ûw

k + qw
k · uw

k)/(û
w
k + uw

k), and (ûw
k + uw

k), respectively.

Accelerating Truth Inference. When a worker submits answers, the TI module

is run and the parameters are updated and stored in the database (Figure 7.1).

As TI takes an iterative approach, it could be expensive to run until convergence.

To alleviate this issue, we develop an incremental approach. The challenges are

three-fold: (1) What are the parameters to update upon receiving an answer? (2)

How can we update those parameters instantly? (3) What parameters should

we store in order to facilitate such updates?

W.l.o.g., assume worker w answers a task ti with the a-th choice. Upon

receiving the answer, the basic idea is that we only update the parameters that

are most related to task ti and worker w, i.e., task ti’s truth and the qualities of

workers who have answered task ti. To facilitate such updates, we store the

following parameters: (1) for a worker w, based on Theorem 7.1, we store its

quality qw
k and weight uw

k (1 ≤ k ≤ m); (2) for a task ti, we store its matrixM(i)

and the probabilistic truth si. The update policy is as follows:

• Step 1: Inferring the Truth. In this step, we only update task ti’s parame-

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 261

ters, i.e.,M(i) (Equations 7.3-7.4) and si = rti ×M(i). In fact, the process can

be further accelerated by storing another parameter M̂(i)
k,j , which records the

numerator in Equation 7.3.

• Step 2: Estimating Worker Quality. In this step, we update the quali-

fies of worker w and those who have answered ti before. To be specific,

(1) for worker w, qw
k = (qw

k · uw
k + si,a · rti

k)/(u
w
k + rti

k) and uw
k = uw

k + rti
k ;

(2) if worker w′ ever answered task ti with j-th answer before, then qw′
k =

(qw′
k · uw′

k − s̃i,j · rti
k + si,j · rti

k)/uw′
k , where s̃i,j is the previous si,j before update (i.e.,

step 1 above).

The complete algorithm is shown in Algorithm 16. It is not hard to prove

that the above two steps are bounded in time O(m · |V(i)|), which is more effi-

cient than the iterative approach. Note that the incremental approach may not

achieve as high quality as the iterative one; however, its advantage is that the

parameters can be updated instantly, which fits to the scenario when workers’

answers arrive in a high velocity. In practice, we can run TI in a delayed man-

ner, that is, the iterative approach will be run in every z submissions of answers

(z = 100 in DOCS).

Next we discuss the detailed incremental algorithm. W.l.o.g., assume that

worker w answers a task ti with the a-th choice, and we represented it in a tuple

(w, ti, a). To address the problem, our basic idea is that we only update the

parameters that are mostly related to task ti and worker w, i.e., task ti’s truth

and the qualities of workers who have answered task ti (including the worker

w).

In order to facilitate such updates, we store the following parameters for a

worker w and a task ti, respectively:

• For a worker w, other than the worker w’s quality (qw), we also store the

aggregated weight of each domain for those tasks answered by w, denoted as

uw = [uw
1 , uw

2 , . . . , uw
m] and each uw

k = ∑tj∈T (w) r
tj
k ;

262 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

Algorithm 16 Incremental Truth Inference (Chapter 7).

Input: (w, ti, a); rti , V(i), si, M̂(i)
k,j andM(i)

k,j for 1 ≤ k ≤ m, 1 ≤ j ≤ `ti ; q
w and

uw for w ∈ W .
Output: V(i), si, M̂(i)

k,j and M(i)
k,j for 1 ≤ k ≤ m, 1 ≤ j ≤ `ti ; q

w and uw for
w ∈ W .

1: s̃i = si; // store the original si
2: // Step 1: Inferring the Truth
3: for 1 ≤ k ≤ m do
4: for 1 ≤ j ≤ `ti do
5: if j = a then
6: M̂(i)

k,j = M̂
(i)
k,j · qw

k ;
7: else
8: M̂(i)

k,j = M̂
(i)
k,j ·

1−qw
k

`ti−1 ;
9: end if

10: end for
11: for 1 ≤ j ≤ `ti do

12: M(i)
k,j = M̂

(i)
k,j / ∑

`ti
j′=1 M̂

(i)
k,j′ ;

13: end for
14: end for
15: si = rti ×M(i);
16: // Step 2: Estimating Worker Quality
17: // Update worker w’s quality
18: for 1 ≤ k ≤ m do
19: qw

k = (qw
k · uw

k + si,a · rti
k)/(u

w
k + rti

k);
20: uw

k = uw
k + rti

k ;
21: end for
22: // Update qualities of other workers (w′) who have answered ti before
23: for vw′

i ∈ V(i) do
24: j = vw′

i ; // store the choice for illustration
25: for 1 ≤ k ≤ m do
26: qw′

k = (qw′
k · uw′

k − s̃i,j · rti
k + si,j · rti

k)/uw′
k ;

27: end for
28: end for
29: V(i) = V(i) ∪ {vw

i }; // update the set V(i)

30: return V(i), si, M̂(i)
k,j andM(i)

k,j for 1 ≤ k ≤ m, 1 ≤ j ≤ `ti ; q
w and uw for

w ∈ W .

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 263

• For a task ti, other than the matrixM(i) and its probabilistic truth si, we also

store the numerator of the matrixM(i), which can be observed in Equation 7.3,

i.e., ∏vw
i ∈V(i) Pr(vw

i | oi = k, v∗i = j). We denote it as M̂(i)
k,j , and from Equation 7.3

it can be inferred thatM(i)
k,j = M̂

(i)
k,j / ∑

`ti
j′=1 M̂

(i)
k,j′ .

Based on the above discussions, we develop an incremental algorithm in

Algorithm 16. Specifically, similar to the iterative approach (Algorithm 15), it

contains two steps:

Step 1: Inferring the Truth (lines 2-15). We first update each numerator ofM(i)
k,j ,

i.e., M̂(i)
k,j by considering worker w’s answer a to task ti: if j = a, then qw

k will be

multiplied; otherwise, 1−qw
k

`ti−1 will be multiplied (lines 4-8). Then we updateM(i)

based on the updated M̂(i) (lines 9-10). Finally the probabilistic truth si will be

updated based on the updatedM(i) (line 11).

Step 2: Estimating Worker Quality (lines 16-28). For this step, we first update

the model for worker w (lines 13-16). Based on Equation 7.5, if we store uw
k =

∑tj∈T (w) r
tj
k , then we can derive qw

k · uw
k = ∑tj∈T (w) r

tj
k · sj,vw

j
. If we consider the

new answer a for task ti, then worker w’s quality should be updated as

qw
k ←

∑tj∈T (w) r
tj
k · sj,vw

j
+ si,a · rti

k

∑tj∈T (w) r
tj
k + rti

k

=
qw

k · uw
k + si,a · rti

k

uw
k + rti

k

.

For the workers who have answered task ti before (lines 17-20), we first store

the original s̃i (line 1), and then update the worker’s quality by considering the

original and updated s̃i,j (lines 18-20).

After these two steps, we update V(i) (line 21) and return the updated pa-

rameters (line 22).

Time Complexity. For the time complexity of Algorithm 16, the first step

takes O(m · `ti) time, and for the second step, the update of worker w’s qual-

ity (lines 13-16) takes O(m) time, and the update of other workers who an-

swered answered task ti (lines 17-20) takesO(m · |V(i)|) time. So in total it takes

264 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

O(m ·max{`ti , |V(i)|}) time. Considering that m and `ti are often constants, so

the time complexity is constrained by the number of answers already obtained

for task ti (bounded by |W|).

7.5 Online Task Assignment

When a worker comes to crowdsourcing platforms such as AMT [1], it in-

stantly interacts with DOCS for task assignment. Specifically, AMT will pass

the unique worker ID to us, then we dynamically assign a set of k tasks (e.g.,

k = 20 in [195, 222]) to the coming worker in AMT. In this section, we address

two problems in OTA. First, if the worker has already completed some tasks,

we select k tasks and assign them to the worker (Section 7.5.1). Second, if the

worker is new, we investigate how to select representative golden tasks to test

the worker’s quality (Section 7.5.2).

7.5.1 Online Task Assignment

If the coming worker w has answered tasks before, we can retrieve related

parameters from database. The Input of the problem includes (1) worker w’s

quality (qw), and (2) tasks’ current information (i.e.,M(i) and si for 1 ≤ i ≤ n).

The Output of the problem is to select k tasks for worker w, from the task set

T − T (w), i.e., the set of tasks not answered by worker w before.

To assign tasks, on one hand, we assign tasks with domains that the worker

is good at; on the other hand, we have to evaluate if a task is really beneficial

to be assigned. For example, for a task ti that is confident enough based on

previous answers (e.g., si = [0.99, 0.01]), then even if the coming worker is a

domain expert for the task, it is of very minor benefit to assign the task.

Following the above discussions, we design an assignment framework,

where for each task ti, it estimates the benefit of assigning it to the coming

worker, i.e., B(ti); we then select k tasks that attain the highest benefits to the

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 265

worker. In the following, we first focus on the problem of assigning k = 1 task,

and then address the general problem of assigning k tasks.

Task Assignment for One Task (k = 1)

To address this, an important problem is how to estimate the benefit of a

task, by considering if the task is answered by the worker? Recall that for a

task ti, we use a distribution si of size `ti to capture its truth. Intuitively, the

more concentrated si is (e.g., for a certain choice j (1 ≤ j ≤ `ti), the value si,j is

close to 1 while other si,j′ for j′ 6= j are close to 0), the more confident to derive

the truth; otherwise, if si tends to be a uniform distribution, then the truth is

ambiguous. By capturing this idea, we apply entropy [167] as the measure to

define the ambiguity of a distribution si, i.e., H(si) = −∑
`ti
j=1 si,j · ln si,j. The

higher the valueH(si) is, the more ambiguous si is. We then define the benefit

function B(ti).

Definition 7.5 (Benefit function B(·)). For a task ti, when a worker w comes, let

ŝi denote the distribution after w answers the task, then the benefit of assigning ti to

worker w is defined as how much ambiguity can be reduced based on the assignment,

i.e., B(ti) = H(si)−H(ŝi).

However, the computation of B(ti) is challenging, as ŝi is unknown before ti

is really answered by w. Then to estimate ŝi, we have to consider the following

two questions:

Q1: what answer the worker may give to the task, and

Q2: how the truth will change if the worker gives an answer.

Next we solve Q1 and Q2, respectively.

Solutions to Q1. In estimating the answer that will be given by w, we denote

it as a random variable vw
i (1 ≤ vw

i ≤ `ti) and estimate it based on the collected

answers, i.e., Pr(vw
i = a | V(i)). By considering all possible true domain oi and

truth v∗i for task ti, we can express Pr(vw
i = a | V(i)) as follows:

266 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

m

∑
k=1

Pr(oi = k)
`ti

∑
j=1

Pr(vw
i = a | oi = k, v∗i = j)Pr(v∗i = j | oi = k, V(i)).

Then we can derive the following theorem that solves Q1.

Theorem 7.2. The probability that worker w will give the a-th choice to task ti is

Pr(vw
i = a | V(i)) =

m

∑
k=1

rti
k ·
[

qw
k ·M

(i)
k,a +

1− qw
k

`ti − 1
· (1−M(i)

k,a)
]
. (7.6)

Proof. Note that we have shown that Pr(vw
i = a | V(i)) can be expressed as the

following equation, i.e.,

m

∑
k=1

Pr(oi = k)
`ti

∑
j=1

Pr(vw
i = a | oi = k, v∗i = j)Pr(v∗i = j | oi = k, V(i)),

which is essentially

∑m
k=1 rti

k ·∑
`ti
j=1M

(i)
k,j ·

[
(qw

k)
1{j=a} ·

(1− qw
k

`ti − 1
)1{j 6=a}

]
=∑m

k=1 rti
k ·
[

qw
k ·M

(i)
k,a + ∑j 6=a

1− qw
k

`ti − 1
·M(i)

k,j

]
=∑m

k=1 rti
k ·
[

qw
k ·M

(i)
k,a +

1− qw
k

`ti − 1
· (1−M(i)

k,a)
]
.

Solutions to Q2. We talk about how the truth si will be updated. Suppose

worker w gives the a-th choice to task ti, and let M(i)|a denote the updated

matrix of M(i). Based on Equations 7.3 and 7.4, we can derive the formula of

each element inM(i)|a in Theorem 7.3.

Theorem 7.3. If worker w gives the a-th choice to task ti, then

M(i)|a
k,j =

M(i)
k,j · (qw

k)
1{j=a} ·

(1−qw
k

`ti−1

)1{j 6=a}

∑
`ti
j′=1M

(i)
k,j′ · (qw

k)
1{j′=a} ·

(1−qw
k

`ti−1

)1{j′ 6=a}
. (7.7)

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 267

Proof. Note that M(i)|a
k,j means that if the coming worker w answers the a-th

choice for task ti, the task’s original matrix item M(i)
k,j will become. Let V(i)

denote the previous answers given to ti (without worker w’s answer a). From

Equation 7.3 we know thatM(i)|a
k,j can be updated to

Pr(vw
i = a | oi = k, v∗i = j)∏vw′

i ∈V(i) Pr(vw′
i | oi = k, v∗i = j)

∑
`ti
j′=1 Pr(vw

i = a | oi = k, v∗i = j′)∏vw′
i ∈V(i) Pr(vw′

i | oi = k, v∗i = j′)
.

Also, from Equation 7.3 we know thatM(i)
k,j can be expressed as

M(i)
k,j = C ·∏vw′

i ∈V(i) Pr(vw′
i | oi = k, v∗i = j),

where C, or the denominator of Equation 7.3, is not related to subscript j in

M(i)
k,j , thus for any 1 ≤ j′ ≤ `ti , we similarly derive

M(i)
k,j′ = C ·∏vw′

i ∈V(i) Pr(vw′
i | oi = k, v∗i = j′).

Considering howM(i)|a
k,j can be updated above, we can derive

M(i)|a
k,j =

Pr(vw
i = a | oi = k, v∗i = j) ·M(i)

k,j · C
−1

∑
`ti
j′=1 Pr(vw

i = a | oi = k, v∗i = j′) ·M(i)
k,j′ · C−1

=
M(i)

k,j · (q
w
k)

1{j=a} ·
(1−qw

k
`ti−1

)1{j 6=a}

∑
`ti
j′=1M

(i)
k,j′ · (q

w
k)

1{j′=a} ·
(1−qw

k
`ti−1

)1{j′ 6=a}
.

Then we can update the truth si as ŝi = rti ×M(i)|a, by considering that worker

w gives the a-th choice to ti.

The solutions to Q1 and Q2 tell us how to compute the probability that w

gives the a-th choice to ti, and the updated truth ŝi if the answer is really given.

Considering all possible answers, we defineH(ŝi) in an expected manner, i.e.,

H(ŝi) = ∑`ti
a=1 H(rti ×M(i)|a) · Pr(vw

i = a | V(i)). (7.8)

268 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

Then for each task ti, we can compute H(ŝi) via Equations 7.6, 7.7, 7.8, and

derive B(ti) in Definition 7.5. We select the task with the highest benefit, i.e.,

argmaxti∈T −T (w) B(ti).

Task Assignment for k Tasks

To select k tasks out of the set T − T (w), it has two challenges:

Challenge I. For a fixed set of k tasks, denoted as Tk (Tk ⊆ T − T (w) and |Tk| =
k), we need to consider all possible answers given by worker w. W.l.o.g., we

assume Tk contains the first k tasks in T (i.e., ti ∈ Tk for 1 ≤ i ≤ k). Let φ =

[φ1, φ2, . . . , φk] denote one possible combination of answers given by w for Tk,

and 1 ≤ φi ≤ `ti . Then upon receiving the answers φ, following Definition 7.5,

the benefit of k tasks is changed to

Bφ(Tk) = ∑k
i=1

[
H(si)−H(rti ×M(i)|φi)

]
. (7.9)

Let all possible combinations of answers for Tk form a set Φ = {φ} and |Φ| =

∏k
i=1 `ti . Then if we consider all φ ∈ Φ, the expected benefit of assigning Tk,

denoted as B(Tk) is expressed as

B(Tk) = ∑φ∈Φ Bφ(Tk) ·∏k
i=1 Pr(vw

i = φi | V(i)). (7.10)

From the above analysis we know that even for a fixed k-task set Tk, computing

its benefit (Equation 7.10) needs to require exponential number of combinations

in Φ (as |Φ| = ∏k
i=1 `ti).

Challenge II. Moreover, we need to select the optimal k tasks (i.e., with the

highest value B(Tk)) out of the set T − T (w). This process requires enumerating

all (n
k) possible cases in the worst case.

To address the first challenge, fortunately we can prove the following the-

orem, which reduces the complexity from exponential to linear. The basic idea

is that if we consider all possible answers for one task (e.g., t1), then it can be

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 269

safely proved that B(t1) can be extracted from B(Tk), and similarly other B(ti)

for ti ∈ Tk − {t1} can also be extracted and added independently.

Theorem 7.4. B(Tk) = ∑ti∈Tk
B(ti).

Proof. W.l.o.g., similar to the analysis in main content, we regard Tk as a set

that contains k first tasks in T , i.e., Tk = {ti | 1 ≤ i ≤ k}. Then we need to

prove B(Tk) = ∑k
i=1 B(ti). In this case, |Φ| = ∑k

i=1 `ti , and we decompose B(Tk)

(Equation 7.10) into two parts: the first part focuses on benefit related to t1, and

the second part focuses on benefits related to other tasks (i.e., ti for 2 ≤ i ≤ k).

For each part, we represent it as a summation over `t1 components, where the

j-th component (1 ≤ j ≤ `t1) considers that φ1 = j, i.e.,

B(Tk) =

`t1

∑
j=1

∑
φ∈Φ s.t. φ1=j

(
H(s1)−H(rt1 ×M(1)|j)

)
·

Pr(vw
1 = j | V(1)) ·

k

∏
i=2

Pr(vw
i = φi | V(i))

+

`t1

∑
j=1

∑
φ∈Φ s.t. φ1=j

[k

∑
i=2

(
H(si)−H(rti ×M(i)|φi)

)]
·

Pr(vw
1 = j | V(1)) ·

k

∏
i=2

Pr(vw
i = φi | V(i))

=

`t1

∑
j=1

(
H(s1)−H(rt1 ×M(1)|j)

)
· Pr(vw

1 = j | V(1))

+ ∑
φ∈Φ s.t. φ1=j

[k

∑
i=2

(
H(si)−H(rti ×M(i)|φi)

)]
·

k

∏
i=2

Pr(vw
i = φi | V(i))

= B(t1)

+ ∑
φ∈Φ′

[k

∑
i=2

(
H(si)−H(rti ×M(i)|φi)

)]
·

k

∏
i=2

Pr(vw
i = φi | V(i)),

where Φ′ contains all possible answers for the first k tasks other than t1, i.e.,

|Φ′| = ∏k
i=2 `ti , and we denote each φ ∈ Φ′ as φ = [φ2, φ3, . . . , φk], where each

1 ≤ φi ≤ `ti (2 ≤ i ≤ k).

270 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

Then we know that B(Tk) = B(t1) + B(Tk−1), where Tk−1 = {ti | 2 ≤ i ≤ k}.
Based on mathematical induction, we can derive B(Tk) = ∑k

i=1 B(ti). Thus we

have proved that if Tk contains the first k tasks in T , we have B(Tk) = ∑k
i=1 B(ti).

It can be generalized to any Tk, which is our theorem, i.e., B(Tk) = ∑ti∈Tk
B(ti).

Theorem 7.4 implies that to compute the benefit for k tasks, we can compute

each B(ti) (Definition 7.5 and Equations 7.6, 7.7, 7.8) and add up individual ben-

efit. Then in order to address the second challenge, i.e., to select the k tasks with

highest B(Tk), we only need to select top k tasks with the highest values of B(ti),

from the set T − T (w).

Time Complexity. To compute the benefit for each task (Equation 7.8), it should

compute Equations 7.6, 7.7, which take O(m`2) in all, where ` = max1≤i≤n `ti .

Then computing benefits for all tasks take O(nm`2). As selecting top k values

in a size n list can be addressed linearly (e.g., PICK algorithm in [26]), the time

complexity for task assignment is O(nm`2). Considering that m and ` are often

constants, the complexity is linear to the number of tasks.

7.5.2 Selecting Golden Tasks

For a new worker, to test the worker’s quality for different domains, we

select some tasks with ground truth, called golden tasks. The golden tasks are

selected after DVE is done. Then for each new worker from AMT [1], we as-

sign the same golden tasks to her, and initialize her quality by comparing her

answers with the ground truth for these tasks. However, we can manually la-

bel the ground truth (or refer to experts) for only a limited number of tasks.

Thus given n tasks and a number n′ � n, the problem is how to select the most

representative n′ tasks (out of n tasks) as golden tasks?

In order to profile each worker in a fine granularity w.r.t. n tasks, we

consider two intuitive guidelines. (1) Each selected golden task should accu-

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 271

rately capture a certain domain. For example, for the k-th domain, the se-

lected task ti should guarantee that its domain vector rti has a high value of

rti
k . (2) The distribution of selected golden tasks w.r.t. domains should ap-

proximate the distribution of all tasks’ aggregated domain vectors. Let n′k
denote the number of tasks selected for the k-th domain, and ∑m

k=1 n′k = n′.

Then the distribution σ = [
n′1
n′ ,

n′2
n′ , . . . , n′m

n′] should approximate the distribution

τ = [∑n
i=1 r

ti
1

n , ∑n
i=1 r

ti
2

n , . . . , ∑n
i=1 r

ti
m

n].

Suppose we know n′k for 1 ≤ k ≤ m, then following the first guideline, for

each domain dk, we can select top n′k tasks with the highest values of rti
k , i.e.,

highly related to dk. Then the remaining problem is how to decide each n′k for

1 ≤ k ≤ m?

Following guideline 2, to define the similarity of two distributions σ and

τ , a widely-used metric is KL-divergence [108]: D(σ, τ) = ∑i σi · ln(σi/τi). It can

be proved in [108] that D(·, ·) ≥ 0 and the lower the value is, the similar the

two distributions are. Thus we aim to minimize D(σ, τ) w.r.t. constraints as

follows:

min
{n′k}

∑m
k=1

n′k
n′
· ln

n′k · n
n′ ·∑n

i=1 rti
k

s.t. ∑m
k=1 n′k = n′ and n′k ∈N for 1 ≤ k ≤ m.

(7.11)

It is not hard to prove that solving Equation 7.11 is NP-hard, due to the fact that

it is in general an “Integer Programming Problem” [143]. Despite its hardness,

we devise an approximation algorithm in Algorithm 17.

The general idea is to let each n′k/n′ ≈ ∑n
i=1 rti

k /n for 1 ≤ k ≤ m w.r.t.

constraints in Equation 7.11. To do this, we first derive a lower-bound for each

n′k and set n′k = b∑
n
i=1 rti

k /n · n′c. Then a procedure is run for n′ −∑m
k=1 n′k times,

and each time it conducts n′ind = n′ind + 1, where ind (1 ≤ ind ≤ m) is the choice

of the domain with the minimum objective value if selected, i.e.,

ind = mink {
n′k+1

n′ · ln
(n′k+1)·n
n′·∑n

i=1 r
ti
k

+ ∑
j 6=k

n′j
n′ · ln

n′j·n

n′·∑n
i=1 r

ti
j

}. Finally for each domain

272 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

Algorithm 17 Golden Tasks Selection (Chapter 7).
Input: n′ (#golden tasks to be selected), tasks ti (1 ≤ i ≤ n)
Output: G

1: for 1 ≤ k ≤ m do
2: n′k = b∑

n
i=1 rti

k /n · n′c;
3: end for
4: while n′ −∑m

k=1 n′k > 0 do

5: ind = mink {
n′k+1

n′ · ln
(n′k+1)·n
n′·∑n

i=1 r
ti
k

+ ∑
j 6=k

n′j
n′ · ln

n′j·n

n′·∑n
i=1 r

ti
j

};

6: n′ind = n′ind + 1;
7: end while
8: G = ∅;
9: for 1 ≤ k ≤ m do

10: G = G ∪ {a set of n′k tasks with the highest values of rti
k };

11: end for
12: return G;

dk, we select top n′k tasks with the highest values of rti
k , and then obtain all our

selected n′ golden tasks.

Time Complexity. To solve Equation 7.11, first computing the lower-bounds

take O(m) time. For a real number x, we know x ≤ bxc + 1, then n′ =

∑m
k=1

∑n
i=1 r

ti
k

n · n′ ≤ ∑m
k=1b

∑n
i=1 r

ti
k

n · n′c+ m,

thus the procedure is run at most m times, which takes O(m2 · n) time. After

solving Equation 7.11, selecting top n′k tasks for different domains takesO(m · n)
time. So in total it takes O(m2 · n) time.

7.6 Experiments

We evaluate DOCS on both real and simulated datasets. The settings are

introduced in Section 7.6.1. Unless stated otherwise, real datasets are used to

evaluate both the effectiveness and efficiency of the three modules: DVE (Sec-

tion 7.6.2), TI (Section 7.6.3), and OTA (Section 7.6.4). We implement DOCS in

Python 2.7 with the Django web framework on a 16GB memory Ubuntu server.

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 273

7.6.1 Settings

Real-World Datasets. We conduct experiments on AMT [1] with four real-

world datasets.

ItemCompare Dataset (Item) [63]. It contains 360 tasks with 4 domains: NBA,

Food, Auto and Country, where each domain has 90 tasks. For each task, it asks

workers to compare between two items. The task descriptions in each domain

are highly similar, for example, in domain Food, each task compares which food

(e.g., ‘Chocolate’ and ‘Honey’) contains more calories.

4-Domain Dataset (4D). It contains 400 tasks, which cover 4 domains: NBA, Car,

Film and Mountain, where each domain has 100 tasks. Different from dataset

Item, in 4D the task descriptions in each domain are not that similar, e.g., in

domain NBA, the tasks vary in different forms: we ask the position of a player;

compare the height (or age) of two players; compare which team wins more

championships, etc. We manually label the ground truth.

Yahoo QA Dataset (QA). It [158] includes queries to a search engine in 2012-

2014, and each query has a best answer in Yahoo Answers [204]. We select 1000

queries from the dataset, where for each query, we generate tasks related to the

best answer. For example, “Where does chili originate from, Texas or Turkey?”, where

the best answer (‘Texas’) and the correct domain (‘Food&Drink’) can be extracted

from the corresponding webpage [6].

SFV Dataset (SFV). It [131] contains 328 tasks, where each task asks the attribute

of a person (e.g., the age of Bill Gates), and each task also shows a set of choices

collected from different QA systems [97,223], from which the workers select one

as the correct choice. The ground truth is provided by [131].

Answer Collection. We publish tasks for the four datasets on AMT [1], which

interacts with workers using Human Intelligence Task (HIT). When a worker

comes, we batch k = 20 tasks in a HIT (same as [195, 222]) to the worker, and

pay $0.1 for the worker upon finishing the HIT. We assign each task to 10 dif-

274 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

ferent workers, so each dataset costs 360×10
20 × $0.1 = $18, $20, $50 and $16.4,

respectively. We select 20 golden tasks (Section 7.5.2) for each dataset.

(1) In TI (Section 7.6.3), to make a fair comparison, we collect workers’ answers

as above and compare our solution (Section 7.4.1) with the existing methods on

the same collected answers for each dataset.

(2) In OTA (Section 7.6.4), as the assigned tasks for each coming worker may

be totally different for different methods, to ensure that the same set of workers

are used in comparisons, similar to [222], we assign tasks to a coming worker in

parallel using different assignment methods. To be specific, there are 6 methods

(see below) in comparison for task assignment, and when a worker comes, we

use each method to assign 3 tasks, so 3× 6 = 18 tasks are batched in a HIT (in

random order) and assigned to the coming worker. We ensure that each method

collects the same number of answers (e.g., 360×10 for dataset Item) in total.

Then we compare with them on respective collected answers for each dataset.

Comparisons. We compare DOCS with existing methods: iCrowd (IC) [63],

FaitCrowd (FC) [131], Majority Vote (MV), ZenCrowd (ZC) [48], David&Skene

(D&S) [47], AskIt! [27], QASCA [222]. As different methods focus on different

perspectives, we compare with different methods in different modules.

(1) In DVE (Section 7.6.2), we compare with IC [63] and FC [131], which try to

exploit the domain(s) of each task.

(2) In TI (Section 7.6.3), we compare with MV, ZC [48], D&S [47], IC [63] and

FC [131], which study truth inference.

(3) In OTA (Section 7.6.4), we perform end-to-end comparisons with methods

AskIt! [27], IC [63], QASCA [222] and two baseline methods (Baseline and D-Max)

that study online task assignment.

Evaluation Metric. For effectiveness, we use Accuracy to evaluate the quality

of a method, and it measures the percentage of tasks whose truth are inferred

correctly by the method. For efficiency, we measure the Execution Time of a

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 275

method.

7.6.2 Evaluating Domain Vector Estimation

Evaluating the Accuracy of Domain Detection. We compare with two methods

IC [63] and FC [131], which exploit diverse domains in a task. To be specific, IC

uses Latent Dirichlet Analysis (LDA [25]) to model diverse domains in a task

and compute the cosine similarity between pairwise tasks. It first manually sets

the number of latent domains (m′), and then uses a generative model to capture

how each task’s text can be generated. Finally it learns a distribution (size m′

vector) for each task, which indicates how it is related to each domain. Similarly,

FC uses TwitterLDA [216], which is an adaptation of LDA [25] and focuses more

on short texts (e.g., Tweets). It also sets the number of latent domains (m′′) and

then learns a specific domain for each task. To summarize, the two models

used by IC and FC (1) only consider the text in each task, and (2) manually set

the number of latent domains and learn a domain vector for each task w.r.t.

latent domains. Different from them, DOCS (1) considers knowledge base (i.e.,

Freebase [71] with rich contextual and semantic information), and (2) learns

a domain vector that captures the explicit domains (i.e., 26 domains in Yahoo

Answers [204]), rather than the latent domains for each task. Next, we compare

DOCS with IC and FC on four datasets.

• Datasets Item & 4D. For dataset 4D, there are 4 domains, and we manually

set the latent m′ and m′′ as 4 to favor them. DOCS uses the default 26 explicit

domains. After computing the domain vector for each task, we regard the do-

main with the highest probability as the detected domain for each task. Then we

manually check for IC and FC on how each latent domain can be mapped to the

4 domains NBA, Car, Film and Mountain: for the domain vectors in tasks with

true domain (say NBA), if we find that the probabilities in a latent dimension

is very high, then we map that latent dimension to NBA. In DOCS, we can ver-

ify that the 4 domains are mapped to Sports, Cars, Entertain and Science in Yahoo

276 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

 0

 20

 40

 60

 80

 100

NBA Food Auto CountryD
o
m

a
in

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
) (a) Dataset Item

 0

 20

 40

 60

 80

 100

NBA Car Film MountainD
o
m

a
in

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
) (b) Dataset 4D

 0

 20

 40

 60

 80

 100

Entertain Science Sports BuisinessD
o
m

a
in

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
) (c) Dataset QA

 0

 20

 40

 60

 80

 100

EntertainBuisiness Sports PoliticsD
o
m

a
in

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
) (d) Dataset SFV

 0

 20

 40

 60

 80

 100

Item 4D QA SFVD
o
m

a
in

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
) (e) Overall

IC(LDA) FC(TwitterLDA) DOCS

Figure 7.3: The Domain Detection Accuracy of Different Methods.

Answers [204], respectively. Finally, we compute the domain detection accuracy

per domain (the percentage of tasks that are detected correctly in the domain).

Figures 7.3(a)(b) show the domain detection accuracy for each domain, by com-

paring with different methods. We also record their overall domain detection

accuracy in Figure 7.3(e). It can be observed that in Item, the accuracy is very

high (∼100%) in all domains for three methods; however, in dataset 4D, our

method DOCS performs much better compared with IC and FC, and the reason

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 277

is that they use topic model-based methods (LDA [25] and TwitterLDA [216]),

which perform well if the tasks in each domain have high string similarities

(e.g., in Item, tasks in each domain compare two given items on the same met-

ric); however, in 4D, as task descriptions vary in each domain, they cannot de-

tect the correct domain. For example, both of the two methods detect the tasks

that compare the heights between two basketball players and two mountains in

the same domain, mainly because they have high string similarities. However,

DOCS can detect the difference between them based on the semantic information

of players and mountains, yielding the overall detection accuracy above 95%.

• Datasets QA & SFV. For dataset QA, although there are 26 domains in Yahoo

Answers, most of the queries are related to Entertain, Science, Sports and Busi-

ness (as most collected search engine queries [158] are related to them), so we

only focus on tasks in those four domains and set the latent m′ and m′′ as 4. For

dataset SFV, since each task asks a specific attribute for a person (e.g., age of

Bill Gates), we manually label the ground truth of the person as his/her most

renowned domain (e.g., Business). As most tasks are related to domains Enter-

tain, Business, Sports and Politics, we focus on those tasks and set m′ = m′′ = 4.

Similarly we compute the domain detection accuracy for the three methods as

above in Figures 7.3(c)(d) and record the overall domain detection accuracy in

Figure 7.3(e). It can be seen that in real-world question answering tasks, as tasks

in each domain are not that similar in strings syntactically, IC and FC perform

very bad (FC performs better than IC as it favors more on short texts); however,

DOCS can capture the semantics in each domain and derive the correct domain

accurately. As a result, it achieves over 20% improvement in overall accuracy.

Analysis on Multiple Domains. Note that for each task, the ground truth is

only one domain. However, in real-world datasets (e.g., QA), each task can

be related to multiple domains. Based on the computed domain vectors, we

pick out those tasks whose domain vectors have more than one mode (or peak).

Among them, we find some interesting cases. For example, in the task “Is there

278 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

Table 7.4: The Efficiency of Heuristics on Domain Vector Estimation.

Dataset
Top-20 (Default) Top-10 Top-3
Alg. 14 Enum. Alg. 14 Enum. Alg. 14 Enum.

Item 27.3s >1 day 7.5s >1 day 0.6s 1.3s
4D 28.6s >1 day 8.8s >1 day 0.8s 1.4s
QA 58.1s >1 day 23.8s >1 day 2.6s 264.7s
SFV 46.3s >1 day 17.7s >1 day 1.9s 406.8s

a name for the whistle song that the Harlem Globetrotters are known for?”, it is both

related to domains ‘Entertain’ and ‘Sports’, and our computed domain vector

has both high probabilities on those two domains. Similarly, we find that the

task “Who owns the Atalanta calcio (soccer/football) team in italy?” is related to both

‘Business’ and ‘Sports’; while the task “What is the name of Simpson’s episod, where

Russia becomes Soviet Union?” is related to both ‘Entertain’ and ‘Politics’. Note

that our framework also considers the relatedness of each domain to each task.

In the future, it might be interesting to develop metrics on evaluating how a

method can compute a task’s multiple domains correctly.

Evaluating the Efficiency of DVE. We next compare the efficiency of Enumera-

tion (O(c|Et| · |Et| ·m)) and Algorithm 14 (O(c ·m2 · |Et|3)) on different heuristics.

In DOCS, we set m = 26, and Et is the set of detected entities by Wikifier [159],

which extracts top c = 20 related concepts for each entity. The efficiency of dif-

ferent methods on different datasets is shown in Table 7.4. It can be seen that on

all four datasets, Algorithm 14 completes within one minute; on the other hand,

Enumeration needs more than 1 day to finish. We have also compared the ef-

ficiency with two heuristics, which remove low-probability concepts, and only

extract top c = 10 and c = 3 concepts for each entity. It can seen in Table 7.4 that

although Enumeration performs fine on small datasets with few entities (e.g., 4D,

Item), it is outperformed significantly (more than 100 times) by Algorithm 14 on

QA and SFV. The reason is that Enumeration takes more time in QA-based tasks

with a large number of entities.

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 279

7.6.3 Evaluating Truth Inference

In this section we evaluate TI in DOCS. We first exploit different aspects of

our TI, and then compare our TI with other competitors. Finally we perform a

case study on a dataset (Item).

Convergence. We run the iterative TI on the collected answers and iden-

tify the change of parameters between adjacent iterations. Let s̄i,j and q̄w
k

denote the probabilistic truth and worker quality in the last iteration, then

the change of parameters ∆ between the adjacent two iterations is defined as

∆ = ∑n
i=1 ∑

`ti
j=1
|si,j−s̄i,j|

n·`ti
+ ∑w∈W ∑m

k=1
|qw

k −q̄w
k |

|W|·m . We vary the number of iterations

and record ∆ in Figure 7.4(a). It can be seen that ∆ drops significantly in the first

10 iterations and remains steady (convergence) ever since. In practice, we can

terminate TI within a few (say 20) iterations.

Varying #Golden Tasks. As we initialize each worker’s quality using golden

tasks, in Figure 7.4(b) we vary the number of golden tasks in [0, 40] and observe

the change of accuracy on different datasets. It can be seen that the quality is

significantly improved with a small number of golden tasks, as the iterative

approach requires a good initialization. However, when the golden tasks are

aplenty (say 20), the accuracy remains steady. For practical usage, we set the

number of golden tasks as 20, which works well in experiments.

Varying #Collected Answers. As we collect each dataset by assigning each task

to exactly 10 workers, in Figure 7.4(c), we vary the number of collected answers

in [1, 10] for each task and observe the accuracy of TI on different datasets. It

can be seen that the accuracy becomes better as more answers are collected.

However, for some dataset such as Item, it remains stable as ≥ 8 answers are

collected. We will study the estimation of stable point in future.

Worker Quality Estimation. We next examine, when the worker answers more

tasks, whether a worker’s quality is closer to the worker’s true quality. We first

compute each worker w’s true quality q̃w by comparing the worker’s answers

280 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

 0

 0.1

 0.2

 0.3

 5 10 15 20 25 30 35 40 45 50P
a
ra

m
e
te

r
C

h
a
n

g
e

 (
 ∆

)

Iteration

(a) Convergence

Item
4D
QA

SFV

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

A
c
c
u
ra

c
y
 (

%
)

#Golden Tasks

(b) Varying #Golden Tasks

Item
4D
QA

SFV

 50

 60

 70

 80

 90

 100

 2 4 6 8 10

A
c
c
u
ra

c
y
 (

%
)

#Collected Answers For Each Task

(c) Varying #Collected Answers

Item
4D
QA

SFV

 0

 0.1

 0.2

 0.3

 0.4

 20 40 60 80 100

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

#Answered Tasks For Each Worker

(d) Worker Quality Estimation

Item
4D
QA

SFV

 0

 5

 10

 15

 20

0 2K 4K 6K 8K 10K

E
x
e
c
u

ti
o
n
 T

im
e
 (

s
)

#Tasks (n)

(e) Scalability of TI (Simulation)

10 workers
100 workers
500 workers

Figure 7.4: Exploiting Different Aspects of Truth Inference in DOCS.

with the ground truth. Here, q̃w
k (1 ≤ k ≤ m) is the fraction of the number of cor-

rectly answered tasks by worker w, among all her answered tasks in domain dk.

Then, we vary the number of collected answers (in [1, 50]) for each worker, and

run TI to compute each worker w’s quality qw. Finally, we record the average

deviation, defined as ∑w∈W ∑m
k=1

|q̃w
k −qw

k |
m·|W| , in Figure 7.4(d). As workers answer

more tasks, the average deviation decreases. Also, when 80 or more tasks are

answered, the deviation becomes consistently low.

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 281

 50

 60

 70

 80

 90

 100

Item 4D QA SFV

A
c
c
u
ra

c
y
 (

%
)

(a) Effectiveness (Accuracy)

 0

 2

 4

 6

 8

 10

Item 4D QA SFV

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

(b) Efficiency (Execution Time)

MV ZC DS IC FC DOCS

Figure 7.5: Truth Inference Comparisons.

Scalability of TI (Simulation). We create n tasks with m = 20. Then the worker

setW is generated, and each task is assigned to 10 randomly selected workers

fromW . We vary n ∈ [0, 10K], |W| ∈ {10, 100, 500} and run TI on randomly

generated workers’ answers. Figure 7.4(e) records the time. It can be seen that

the time linearly increases with n, and the worker size is invariant with time,

which corresponds to the complexity O(cm`2 · ∑n
i=1 |V(i)|). Given that truth

inference can be done offline, it is efficient, as it takes less than 15s with large

data (n = 10K and |W| = 500).

Comparing DOCS with Competitors on TI. We compare with other five com-

petitors (i.e., MV, ZC, D&S, IC and FC) on truth inference: (1) MV regards the

truth of a task as the answer given by the highest number of workers; (2) ZC [48]

models each worker’s quality as a value, and adapts EM framework [49] to iter-

atively compute worker’s quality and truth; (3) D&S [47] models each worker’s

quality as a matrix, and also adapts EM framework [49] to iteratively compute

worker’s quality and truth; (4) IC [63] models a worker’s quality for each task,

and derives the truth using weighted majority voting; (5) FC [131] models a

worker’s quality as a vector of size m′′, indicating the worker’s quality for dif-

ferent latent domains, and it iteratively drives truth and worker’s quality.

To make a fair comparison, we initialize the workers’ qualities of all other

competitors using the same golden tasks. Note that as IC and FC exploit the do-

282 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

mains of each task, and the domain detection accuracy is not satisfactory (Fig-

ure 7.3), to do a more challenging job, we initially assign the ground truth of each

task’s domain to IC and FC, and then compute the truth of each task by them. We

show the comparison results on both the effectiveness (Accuracy) and efficiency

(Execution Time) of all datasets in In Figures 7.5(a)(b). We have the following

observations: (1) MV is surpassed by other competitors, as it does not model

a worker’s quality and regard each worker as equal. (2) ZC and D&S model

a worker as a value or matrix, which does not consider a worker’s quality for

different domains, and that is why they are outperformed by more advanced

methods. (3) IC, FC and DOCS model a worker’s qualities for different domains,

and DOCS outperforms other competitors on all datasets. Note that although IC

and FC have been assigned with the ground truth of each task’s domain in truth

inference, we still outperform them a lot because our designed approach can

capture the inherent relations between workers’ qualities and tasks’ truth accu-

rately; while for FC, the modeled relations cannot capture the inherent relations

very well, and for IC, it uses weighted majority voting, whose result is easy to

be misled by low-quality workers. (4) For efficiency (Figure 7.5(b)), MV is the

fastest as it can directly compute the truth of each task, while others adopt an

iterative approach. IC is the least efficient as it first takes a preliminary offline

computation, which will then facilitate online inference. As truth inference can

be done offline, all methods can work well in practice. Dataset QA costs more

time as it is larger than others.

We perform a case study on Item to show workers’ qualities.

Worker’s True Quality Across Domains. Similar to Worker Quality Estimation,

we first compute each worker w’s true quality q̃w for four domains (qw
k). In each

domain (1 ≤ k ≤ 4), we split each worker w’s quality qw
k into 10 bins: it falls into

the i-th bin (1 ≤ i ≤ 9) if qw
k ∈ [i−1

10 , i
10), and in the 10-th bin if qw

k ∈ [0.9, 1.0].

Then for each domain, we record the number of workers that fall into each bin

in Figure 7.6(a). It can be seen that most workers are good at answering tasks

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 283

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

#
w

o
rk

e
rs

 i
n

 t
h

e
 b

in

The i-th bin (1<= i <= 10)

(a) Statitstics of q
w
k (1<= k <= 4)

NBA
Food
Auto

Country

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

Y
:

e
s
t

q
u

a
lit

y
 (

 q
w k

)

X: true quality (q
~w

k)

(b) Quality Calibration

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

Y
:

e
s
t
q
u
a
lit

y
 (

 q
w 1

)

X: true quality (q
~w

1)

(c) Calibration in NBA (d1)

Figure 7.6: Case Studies of Worker Qualities on Dataset Item.

related to Auto (as there are ≥15 workers with quality ≥ 0.9); while workers

have relatively low qualities on answering tasks related to Food. This means

that it is necessary to select domain experts in all workers.

Worker Quality Calibration. Similar to the above, we first compute each

worker w’s true quality q̃w. Then we study whether the estimated quality qw
k

by DOCS is close to the true quality q̃w
k . In Figure 7.6(b), we select 3 work-

ers who have answered the highest number of tasks and study their qualities.

Specifically, the three workers are identified by labels ‘×’, ‘�’, ‘�’; each worker

w corresponds to 4 points, where each point (q̃w
k , qw

k) corresponds to a domain

dk (1 ≤ k ≤ 4). In the ideal case, all points should lie on the line Y = X, which

means that the quality is estimated the same as the true quality. We observe

that (1) a worker has diverse qualities in different domains. For example, the

worker with label ‘�’ has high qualities on two domains, and low qualities on

284 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

 0

 200

 400

 600

 800

 0 5 10 15 20

E
x
e

c
u
ti
o

n
 T

im
e
 (

s
)

#Golden Tasks (n’)

(a) Comparison

DOCS
Enumearation

 0

 0.1

 0.2

 0.3

 0.4

1K 4K 7K 10K

E
x
e

c
u
ti
o

n
 T

im
e
 (

s
)

#Golden Tasks (n’)

(b) Scalability (Simulation)

m = 10
m = 20
m = 50

Figure 7.7: Golden Tasks Selection (Simulation).

other domains. (2) We can estimate a worker’s quality accurately, as the points

drawn in the figure lie very close to the line Y = X. For the domain NBA (d1),

we further plot the points for all workers who have performed more than one

HIT (i.e.,> 20 tasks) in Figure 7.6(c). We can observe that in general, qw
1 is close

to q̃w
1 .

7.6.4 Evaluating Online Task Assignment

We first evaluate golden tasks selection, and then compare with other com-

petitors in task assignment on respective collected datasets.

Evaluating Golden Tasks Selection (Simulation). The key of selecting golden

tasks (Section 7.5.2) is to solve Equation 7.11, which enumerates all possible

vectors [n′1, n′2, . . . , n′m] such that ∑m
k=1 n′k = n′ and n′k ∈ N (1 ≤ k ≤ m). This

is called “Compositions of n′ with size m (0 is allowed)” [41], and it consists of

(n′+m−1
m−1) possible cases. By enumerating all cases, we can derive the optimal

vector which obtains the minimum KL-divergence, i.e., Dopt. We can also com-

pute D based on our solution (Section 7.5.2). We set m = 10, vary n′ ∈ [0, 20],

and for each n′, a distribution of size m, i.e., τ is randomly generated. Then we

record the time of both methods in Figure 7.7(a). It can be seen that the time for

Enumeration increases exponentially with n′, and when n′ = 20, it takes more

than 600s; while DOCS is efficient, which takes <0.01s. We also compute the ap-

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 285

 50

 60

 70

 80

 90

 100

Item 4D QA SFV

A
c
c
u
ra

c
y
 (

%
)

(a) Effectiveness (Accuracy)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Item 4D QA SFV

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

(b) Efficiency (Execution Time)

BaseLine AskIt! IC QASCA D-Max DOCS

 0

 0.05

 0.1

 0.15

 0.2

0 2K 4K 6K 8K 10K

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

#Tasks (n)

(c) Scalablity of OTA (Simulation)

k = 5
k = 10
k = 50

Figure 7.8: Online Task Assignment Comparisons.

proximation ratio, defined as γ = |D−Dopt|/Dopt over all experiments, and the

average γ is within 0.1%, which means that our computed results are very close

to optimum. Next, we evaluate the scalability of our solution in Figure 7.7(b).

We vary n′ ∈ [1K, 10K], m ∈ {10, 20, 50} and observe the execution time. It can

be seen that for a given m, the time is invariant with n′, because the method that

solves Equation 7.11 takes O(m2 · n), i.e., independent of n′.

Comparing DOCS with Competitors on OTA. We compare with other five

competitors (i.e., Baseline, AskIt!, IC, QASCA, and D-Max) that address task as-

signment. Note that task assignment also requires truth inference method to

derive worker’s quality and infer task’s truth: (1) Baseline uses MV to infer truth

and randomly selects k tasks to assign to the coming worker; (2) AskIt! [27]

uses MV to infer truth and leverages an entropy-like method to select k tasks

for assignment; (3) IC [63] uses weighted majority voting to infer truth, and

intuitively, it selects k tasks for assignment such that the coming worker has

286 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

the highest quality to answer, with the constraints that each task should be an-

swered with the same number of times (in our scenario, exactly 10 times) in the

end; (4) QASCA [222] uses D&S [47] to infer truth, and it selects k tasks such that

the estimated quality (Accuracy in our scenario) can be improved most, and

assigns them to the worker. (5) D-Max uses TI (Section 7.4) to infer truth, and

it selects k tasks for assignment such that the coming worker has the matching

domain to answer.

When comparing with different methods, we follow the instructions in Sec-

tion 7.6.1 and assign k = 3 tasks using each method in parallel. There are 360×10

(3.6K), 4K, 10K, and 3.28K assignments in total for the four datasets. We show

the Accuracy after all assignments and record the worst case assignment time

in Figures 7.8(a)(b). We have the following observations: (1) Baseline performs

worst as it randomly assigns tasks and does not consider the tasks’ truth in-

formation or the coming worker’s quality; (2) AskIt! considers tasks’ truth in

assignment, but does not take worker’s quality into account; (3) QASCA per-

forms better as it considers both the tasks’ truth and worker’s quality in assign-

ment, but it does not take the domain information of tasks and workers into

account; (4) IC captures a worker’s quality for answering different tasks; how-

ever, it selects k tasks such that the worker has the highest quality to answer,

which may assign tasks that are already confident enough. Furthermore, it re-

stricts that each task should be answered with the same times, which does not

consider that the assignments for the easy tasks can be saved for hard tasks; (5)

although D-Max uses the TI (Section 7.4) to infer truth, it selects k tasks with

the matching domain to the coming worker, which may assign tasks that are

already confident enough; (6) DOCS performs the best, outperforming the best

of other competitors consistently on all datasets. The reason is that we consider

three factors: tasks’ truth, worker’s quality and the domain information. We

estimate the benefit if a task will be assigned and answered by the worker, and

selects the optimal k tasks which lead to the highest benefits; (7) all methods can

finish the assignment efficiently, as it can be seen in Figure 7.8(b) that the worst

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 287

case assignment is within 0.02s.

Scalability of OTA (Simulation). We generate n tasks with m = 20. Then we

randomly generate the coming worker w’s quality and the matrixM(i) for each

task ti. Finally k tasks are assigned to worker w by running methods in Sec-

tion 7.5.1. We vary n ∈ [0, 10K], k ∈ {5, 10, 50} and record the time in Fig-

ure 7.8(c). It can be seen that the assignment time increases linearly with n,

which corresponds to the complexity O(nm`2). We can also observe that the

assignment time is independent of k. This is because that we use PICK algo-

rithm [26] to select top k tasks with highest benefits, which is slightly affected

by k. The assignment is efficient, and it can be finished within 0.2s with large

data (n = 10K and k = 50).

7.7 Related Works

Since we have reviewed most of the related works of crowdsourcing in

Chapter 2, this section only highlights the part related to domain aware task

model and task assignment.

Domain Aware Task Model. Most existing crowdsourcing works [27,47,48,149,

222] do not differentiate between tasks. Recently, [200] models the difficulty in

tasks, while [63] and [131] exploit the diverse domains in each task using topic

models (i.e., LDA [25] and TwitterLDA [216]). However, [63, 131] require a user

to input the number of latent domains and cannot capture a task’s related do-

main(s) explicitly and correctly, without considering the semantics in texts. We

leverage the knowledge base (i.e., Freebase [71]), which has rich contextual and

semantics information and can capture a task’s diverse domain(s) in an explicit

and accurate way. Note that there are other works [208, 217] that model a task

and worker’s diverse domains, but they do not consider knowledge base and

leverage the external information, e.g., an answer with thumbs-up and thumbs-

down voted by other workers. However, in reality the external information is

288 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

hard to get, thus we do not assume them available and only leverage tasks’

text descriptions and workers’ answers. There are also some crowdsourcing

works [15, 40] that consider knowledge bases, but they focus on different per-

spectives, e.g., [40] studies data cleaning and [15] focuses on crowd mining.

Domain Aware Task Assignment. Knowledge-intensive crowdsourcing solu-

tions require external information, e.g., workers’ wages and acceptance ratio

in [164], and a complete skill taxonomy tree, a worker’s exact skills and the

required skills of tasks in [138], which are hard to obtain in real crowdsourc-

ing platforms (e.g., AMT [1]). While our work considers typical crowdsourcing

settings used in existing platforms.

7.8 Chapter Summary

In this chapter, we first focus on question answering application, and gener-

alize to the study of domain-aware tasks. To be specific, we have built a system

DOCS, which contains three main modules: DVE, TI and OTA. After a requester

submits tasks, DVE leverages the KB to interpret the domains for each task, and

then DOCS interacts with AMT [1] adaptively. When a worker submits answers,

TI is run to infer workers’ qualities and tasks’ truth, by exploring their inherent

relations. When a worker requests for new tasks, OTA dynamically assigns k

tasks with the highest benefits to the worker. We conduct experiments to test the

effectiveness and efficiency, showing that DOCS outperforms existing state-of-

the-art methods on the three modules.

In future work, we will consider the following directions: (1) we will see

whether a more diverse sample of workers (e.g., the selected workers follow the

expertise distribution) may help in truth inference, as now our model focuses

on selecting a biased sample which only contains domain experts; (2) we will

study the case if the domain of input data is not in text format (e.g., an image)

and also the case if available knowledge base is not appropriate for the crowd-

CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM 289

sourced domains; (3) we will consider how the design of different interfaces

would affect the crowdsourcing answers, e.g., one way is to first classify the

tasks in different domains, and each HIT contains all tasks in the same domain;

(4) we will consider different evaluation metrics (e.g., F-score) and see whether

our methods work well in various evaluation metrics.

290 CHAPTER 7. A DOMAIN-AWARE TASK CROWDSOURCING SYSTEM

291

Chapter 8

Conclusions and Future Work

In this thesis, we address two fundamental components in crowdsourc-

ing framework, i.e., task assignment and truth inference. We first dive deep

into these two components, respectively (Chapters 3-4 and Chapter 5). We then

discuss the combination of them and apply them to specific crowdsourcing ap-

plications (Chapters 6-7). This chapter closes the thesis by first outlining the

conclusions (Section 8.1), and then briefly discussing some promising future di-

rections (Section 8.2).

8.1 Conclusions

In this section, we conclude our solutions to task assignment (Chapters 3-

4), truth inference (Chapter 5), and how to combine them together and apply

them to specific crowdsourcing applications (Chapters 6-7).

• Task Assignment (Chapters 3-4). We focus on the task assignment problem

under the task-based setting in Chapter 3. Given a set of tasks, when a worker

comes, we focus on assigning a subset of tasks to the coming worker. To solve

this, we propose a novel task assignment framework by incorporating evalua-

tion metrics into assignment strategies, and formalize the online task assignment

292 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

problem under the proposed framework. We generalize the definition of evalu-

ation metrics to be able to quantify the result quality w.r.t a distribution matrix,

and devise efficient algorithms to identify the optimal result of each task that

can maximize the overall quality. Two respective linear online assignment al-

gorithms are proposed that can efficiently select the best subset of tasks for a

coming worker. We develop a system called QASCA, which enables a popular

crowdsourcing platform (i.e., AMT) to support our task assignment framework.

We evaluate the performance of QASCA on five real applications. Experimental

results indicate that QASCA can achieve much better (of more than 8% improve-

ment) result quality compared with five state-of-the-art systems.

We then study the task assignment problem under the worker-based setting

in Chapter 4. Given a budget and a set of workers, we focus on selecting a subset

of workers which attain the highest aggregated quality within the budget con-

straint. To solve this, we develop a polynomial-time approximation algorithm,

which enables a large number of candidate solutions to be pruned, without a

significant loss of accuracy. We further develop a theoretical error bound of this

algorithm. Particularly, our approximate computation algorithm is proved to

yield an error of not more than 1%. We also leverage a successful heuristic, the

simulated annealing heuristic, by designing local neighborhood search func-

tions. To evaluate our solutions, we have performed extensive evaluations on

real and synthetic crowdsourced data. Our experimental results show that our

algorithms can solve the problem effectively and efficiently. The quality of our

solution is also consistently better than the existing works.

Considering the solutions to task assignment problem in Chapters 3 and 4,

it might be interesting to study how to address the general task assignment

problem by combining these two settings together, that is, “Given a fixed budget,

how to select suitable tasks and assign to the most appropriate workers?”

• Truth Inference (Chapter 5). We perform a thorough analysis and experimen-

tal comparison of the solutions to the truth inference problem, i.e., given work-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 293

ers’ answers collected for tasks, how to infer the truth of each task? To dive in,

we survey 17 existing algorithms, summarize a framework, and provide an in-

depth analysis and summary on the 17 algorithms from different perspectives,

which can help practitioners to easily grasp existing truth inference algorithms.

We also experimentally conduct a thorough comparison of these methods on 5

datasets with varying sizes, publicize our codes and datasets (Section 1.4) and

provide experimental findings, which give guidance for selecting appropriate

methods under various settings.

•Multi-Label and Domain-Aware Tasks (Chapters 6-7). We combine task as-

signment and truth inference together, and first apply them to multi-label tasks

in Chapter 6. For task assignment, we develop an effective algorithm that judi-

ciously selects a subset of tasks with the largest amount of uncertainty reduction

for the current worker, in linear time. For truth inference, we propose an effec-

tive worker model, and devise a method that jointly infers each task’s truth and

each worker’s model. We further consider how to integrate label correlations

into our method. Finally, we develop Comet, and use two real-world datasets

to perform experiments on two crowdsourcing platforms. Results show that

Comet outperforms existing state-of-the-art methods, and is robust under vari-

ous settings. It achieves over 20% improvements on the two datasets performed

by low-quality workers. We also conduct experiments on simulated data, in or-

der to verify the scalability of Comet.

We then apply task assignment and truth inference to domain-aware tasks

in Chapter 7. There are three components: domain vector estimation, task as-

signment, and truth inference. For domain vector estimation, we propose an

algorithm that can reduce the complexity from exponential to polynomial. For

task assignment, we have developed an optimal and linear algorithm. For

truth inference, we exploit the inherent relations between workers’ qualities

and tasks’ truth, and finally devise an iterative approach that collectively infers

those parameters. We also study how to maintain each worker’s quality in the

294 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

long run and devise update policies for the incremental inference algorithms.

8.2 Future Work

In this section, we first provide some research challenges for task assign-

ment and truth inference respectively. We then illustrate other research oppor-

tunities in crowdsourced data management.

• Task Assignment. (1) As the worker history is maintained and expected to

come back to answer another set of tasks, it might be interesting to construct

certain scope of active advertisers and actively recruit them to answer tasks.

(2) We will further investigate the method of dealing with continuous values

and more complicated task types (e.g., cluster-based task [192] and transcription

task [93]). (3) More evaluation metrics will be incorporated in the assignment

framework. (4) We focus on task assignment over a specific (or homogeneous)

set of tasks, then how to incorporate heterogeneous tasks into the assignment

framework is another direction. (5) We also plan to consider if a requester has

multiple metrics in her mind (say both Accuracy and F-score), then how can we

wisely assign tasks to a coming worker.

• Truth Inference. (1) Task Types. In decision-making and single-label tasks,

there is no “best” method that beats others, and we recommend D&S [47] and

LFC [161], which are relatively more effective and efficient. In numeric tasks,

we recommend Mean and LFC N [161], and there is still room to improve nu-

meric tasks. Moreover, there are other more complicated task types that are

merely studied, e.g., translation tasks [93], or tasks that require workers to col-

lect data [190]. (2) Task Design. In order to collect high quality crowdsourced

data in an efficient way, it is important to design tasks with friendly User Inter-

face (UI) with a feasible price. Although there are some works that study how

to set the prices [75] and acquire answers from crowd more efficiently [82], the

design of friendly UI is not studied extensively. It is also interesting to study

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 295

the relations between the design of UI, price, worker’s latency and quality. (3)

Data Redundancy. The quality significantly increases with small redundancy,

and keeps stable for a large redundancy. Then how to estimate the data re-

dundancy with stable quality? Is it possible to estimate the improvement with

more data redundancy? (4) Qualification Test. Not all methods can benefit from

qualification test, and the quality of some methods even decrease. So is it pos-

sible to estimate the benefit of qualification test for a method? (5) Hidden Test.

Although most methods can benefit from them, the improvements vary in dif-

ferent datasets and methods. Thus is it possible to estimate the improvement

with hidden test (i.e., a number of golden tasks) for a method on a dataset? (6)

Incorporation of More Rich Features. We only consider the collected answers for

tasks; however, we do not incorporate more rich information, for example, the

contexts in tasks (each task’s textual descriptions or the pixels in image tasks).

These have been mentioned in existing works [170, 207]. We do not include

those into comparisons since most of the datasets do not make the original tasks

public. It might be interesting to see how much improvement when such infor-

mation is considered.

• Query Optimization. An SQL query often corresponds to multiple query

plans and it relies on a query optimizer to select the best plan. Traditionally,

the way a query optimizer works is to estimate the computation cost of each

query plan and choose the one with the minimum estimated cost. However, this

process turns to be quite challenging in a crowdsourcing environment because

(1) there are three optimization objectives (result quality, monetary cost, and

latency) that need to be considered; (2) humans are much more unpredictable

than machines.

• Benchmark. A large variety of TPC benchmarks (e.g., TPC-H for analytic

workloads, TPC-DI for data integration) standardize performance comparisons

for database systems and promote the development of database research. Al-

though we maintained some open-source public datasets (Section 1.4), there is

296 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

still lack of standardized benchmarks available. In order to better explore the re-

search topic, it is important to study how to develop evaluation methodologies

and benchmarks for crowdsourced data management systems.

• Big Data. In the big data era, data volumes are increasing very fast. Com-

pared to machines, humans are much more expensive, and thus it would be

increasingly more costly to apply crowdsourcing to emerging big data settings.

There are existing works that aim to address this problem, but they only work

for some certain data processing tasks, such as data cleaning [40], data label-

ing [142]. Therefore, it is important to continue this study and to develop new

techniques that work for all kinds of data processing tasks.

• Macro-Tasks. Most of existing studies focus on micro-tasks, which can be

easily assigned to workers and instantly answered by workers. However, many

real applications need to use macro-tasks, such as writing a paper. Macro-tasks

are hard to be split and accomplished by multiple workers, because they will

loose the context information if they are split [81]. Workers are not interested in

answering a whole macro-task as each macro-task will take a long time. Thus it

is rather challenging to support macro-tasks, including automatically splitting

a macro-task, assigning tasks to crowd or machines, and automatically aggre-

gating the answers.

• Privacy. There are several types of privacy issues in crowdsourcing. First, the

requester wants to protect the privacy of their tasks [203]. The tasks may contain

sensitive attributes and could cause privacy leakage. Malicious workers could

link them with other public datasets to reveal individual private information.

Although the requester can publish anonymity data to the workers using exist-

ing privacy techniques, e.g., K-Anonymity, it may lower down the quality as the

workers cannot get the precise data. Thus it is challenging to trade-off the accu-

racy and privacy for requesters. Second, the workers have privacy-preserving

requirement. Personal information of workers can be inferred from the answers

provided by the workers, such as their locations, professions, hobbies. On the

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 297

other hand, the requester wants to assign their tasks to appropriate workers that

are skilled at their tasks (or close to the tasks).

• Mobile Crowdsourcing. With the growing popularity of smartphones,

there are emerging mobile crowdsourcing platforms, e.g., gMission [37], Chi-

naCrowd [3]. These mobile platforms pose new challenges for crowdsourced

data management. First, more factors (e.g., spatial distance, mobile user inter-

face) will affect workers’ latency and quality. It is more challenging to control

quality, latency and cost for mobile platforms. Second, traditional crowdsourc-

ing platforms adopt worker selection model to assign tasks; however, mobile

crowdsourcing requires to support server assignment model, which calls for

new task assignment techniques.

298 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

299

Bibliography

[1] Amazon mechanical turk. https://www.mturk.com/.

[2] Chi-squared distribution. https://en.wikipedia.org/wiki/

Chi-squared_distribution.

[3] Chinacrowd. http://www.chinacrowds.com.

[4] Convnet. https://code.google.com/p/cuda-convnet/.

[5] Crowdflower. http://www.crowdflower.com.

[6] An example in yahoo answers. http://answers.yahoo.com/question/

index?qid=20071211155603AAKwtyr.

[7] External hit. http://docs.aws.amazon.com/AWSMechTurk/latest/

AWSMturkAPI/ApiReference_ExternalQuestionArticle.html.

[8] Flickr. https://www.flickr.com/.

[9] Random ballot. http://en.wikipedia.org/wiki/Random_ballot.

[10] Upwork. https://www.upwork.com.

[11] Adult Datset. https://github.com/ipeirotis/Get-Another-Label/

tree/master/data.

300 BIBLIOGRAPHY

[12] Abdullah Alfarrarjeh, Tobias Emrich, and Cyrus Shahabi. Scalable spatial

crowdsourcing: A study of distributed algorithms. In MDM, volume 1,

pages 134–144. IEEE, 2015.

[13] Sihem Amer-Yahia and Senjuti Basu Roy. Human factors in crowdsourc-

ing. PVLDB, 9(13):1615–1618, 2016.

[14] Yael Amsterdamer, Susan Davidson, Anna Kukliansky, Tova Milo, Slava

Novgorodov, and Amit Somech. Managing general and individual

knowledge in crowd mining applications. In CIDR, 2015.

[15] Yael Amsterdamer, Susan B Davidson, Tova Milo, Slava Novgorodov, and

Amit Somech. Oassis: query driven crowd mining. In SIGMOD, pages

589–600. ACM, 2014.

[16] Yael Amsterdamer, Susan B Davidson, Tova Milo, Slava Novgorodov, and

Amit Somech. Ontology assisted crowd mining. PVLDB, 7(13):1597–1600,

2014.

[17] Yael Amsterdamer, Yael Grossman, Tova Milo, and Pierre Senellart.

Crowd mining. In SIGMOD, pages 241–252. ACM, 2013.

[18] Yael Amsterdamer, Yael Grossman, Tova Milo, and Pierre Senellart.

Crowdminer: Mining association rules from the crowd. PVLDB,

6(12):1250–1253, 2013.

[19] A.P.Dawid and A.M.Skene. Maximum likelihood estimation of observer

error-rates using em algorithm. Appl.Statist., 28(1):20–28, 1979.

[20] Ashish Goel and David Lee, Triadic Consensus: A Randomized Algo-

rithm for Voting in a Crowd. http://arxiv.org/pdf/1210.0664v1.pdf.

[21] Bahadir Ismail Aydin, Yavuz Selim Yilmaz, Yaliang Li, Qi Li, Jing Gao,

and Murat Demirbas. Crowdsourcing for multiple-choice question an-

swering. In AAAI, pages 2946–2953, 2014.

BIBLIOGRAPHY 301

[22] Zafer Barutcuoglu, Robert E Schapire, and Olga G Troyanskaya. Hierar-

chical multi-label prediction of gene function. Bioinformatics, 22(7):830–

836, 2006.

[23] Bayes’ Theorem. http://en.wikipedia.org/wiki/Bayes’_theorem.

[24] Wei Bi and James T Kwok. Multilabel classification with label correlations

and missing labels. In AAAI, 2014.

[25] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allo-

cation. JMLR, 3(Jan):993–1022, 2003.

[26] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Time bounds for

selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.

[27] Rubi Boim, Ohad Greenshpan, Tova Milo, Slava Novgorodov, Neoklis

Polyzotis, and Wang-Chiew Tan. Asking the right questions in crowd

data sourcing. In ICDE, pages 1261–1264. IEEE, 2012.

[28] David Bookstaber. Simulated annealing for traveling salesman problem.

[29] Jonathan Bragg, Daniel S Weld, et al. Crowdsourcing multi-label classifi-

cation for taxonomy creation. In HCOMP, 2013.

[30] David Guy Brizan and Abdullah Uz Tansel. A. survey of entity resolution

and record linkage methodologies. Communications of the IIMA, 6(3):5,

2015.

[31] Chris Buckley, Matthew Lease, and Mark D. Smucker. Overview of the

trec 2010 relevance feedback track (notebook). In The Nineteenth TREC

Notebook, 2010.

[32] Chris Callison-Burch. Fast, cheap, and creative: evaluating translation

quality using amazon’s mechanical turk. In EMNLP, pages 286–295, 2009.

302 BIBLIOGRAPHY

[33] Caleb Chen Cao, Jieying She, Yongxin Tong, and Lei Chen. Whom to ask?

jury selection for decision making tasks on micro-blog services. PVLDB,

5(11):1495–1506, 2012.

[34] C.G.Small. Expansions and asymptotics for statistics. CRC Press, 2010.

[35] Chengliang Chai, Guoliang Li, Jian Li, Dong Deng, and Jianhua Feng.

Cost-effective crowdsourced entity resolution: A partial-order approach.

In SIGMOD, pages 969–984, 2016.

[36] Lei Chen, Dongwon Lee, and Tova Milo. Data-driven crowdsourcing:

Management, mining, and applications. In ICDE, pages 1527–1529. IEEE,

2015.

[37] Zhao Chen, Rui Fu, Ziyuan Zhao, Zheng Liu, Leihao Xia, Lei Chen, Peng

Cheng, Caleb Chen Cao, Yongxin Tong, and Chen Jason Zhang. gmission:

a general spatial crowdsourcing platform. PVLDB, 7(13):1629–1632, 2014.

[38] X. Cheng and D. Roth. Relational inference for wikification. In EMNLP,

pages 1787–1796, 2013.

[39] Lydia B Chilton, Greg Little, Darren Edge, Daniel S Weld, and James A

Landay. Cascade: Crowdsourcing taxonomy creation. In SIGCHI, pages

1999–2008. ACM, 2013.

[40] Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan

Tang, and Yin Ye. Katara: A data cleaning system powered by knowledge

bases and crowdsourcing. In SIGMOD, pages 1247–1261, 2015.

[41] Compositions. http://mathworld.wolfram.com/Composition.html.

[42] Joana Costa, Catarina Silva, Mário Antunes, and Bernardete Ribeiro. On

using crowdsourcing and active learning to improve classification perfor-

mance. In ISDA, 2011.

BIBLIOGRAPHY 303

[43] Crowdsourcing Datasets. http://dbgroup.cs.tsinghua.edu.cn/ligl/

crowddata/.

[44] Peng Dai, Christopher H. Lin, Mausam, and Daniel S. Weld. Pomdp-

based control of workflows for crowdsourcing. Artif. Intell., 202:52–85,

2013.

[45] Sanjib Das, Paul Suganthan G.C., AnHai Doan, Jeffrey F. Naughton,

Ganesh Krishnan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and

Youngchoon Park. Falcon: Scaling up hands-off crowdsourced entity

matching to build cloud services. In SIGMOD, SIGMOD ’17, pages 1431–

1446, New York, NY, USA, 2017. ACM.

[46] Susan B. Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. Using

the crowd for top-k and group-by queries. In ICDT, pages 225–236, 2013.

[47] Alexander Philip Dawid and Allan M Skene. Maximum likelihood esti-

mation of observer error-rates using the em algorithm. Applied statistics,

pages 20–28, 1979.

[48] Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-

Mauroux. Zencrowd: leveraging probabilistic reasoning and crowdsourc-

ing techniques for large-scale entity linking. In WWW, pages 469–478,

2012.

[49] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the em algorithm. J.R.Statist.Soc.B, 30(1):1–38, 1977.

[50] Dong Deng, Guoliang Li, Shuang Hao, Jiannan Wang, and Jianhua Feng.

Massjoin: A mapreduce-based method for scalable string similarity joins.

In ICDE, pages 340–351, 2014.

[51] Jia Deng, Olga Russakovsky, Jonathan Krause, Michael S Bernstein, Alex

Berg, and Li Fei-Fei. Scalable multi-label annotation. In SIGCHI, pages

3099–3102. ACM, 2014.

304 BIBLIOGRAPHY

[52] Werner Dinkelbach. On nonlinear fractional programming. Management

Science, 13(7):492–498, March,1967.

[53] A Doan, Michael J Franklin, Donald Kossmann, and Tim Kraska. Crowd-

sourcing applications and platforms: A data management perspective.

PVLDB, 4(12):1508–1509, 2011.

[54] Xin Luna Dong, Barna Saha, and Divesh Srivastava. Less is more: Select-

ing sources wisely for integration. PVLDB, 6(2):37–48, 2012.

[55] A. Drexl. A simulated annealing approach to the multiconstraint zero-one

knapsack problem. Computing, 40:1–8, 1988.

[56] Lei Duan, Satoshi Oyama, Haruhiko Sato, and Masahito Kurihara. Sep-

arate or joint? estimation of multiple labels from crowdsourced annota-

tions. Expert Systems with Applications, 41(13):5723–5732, 2014.

[57] John Duggan and Cesar Martinelli. A bayesian model of voting in juries.

Games and Economic Behavior, 37(2):259–294, 2001.

[58] Pinar Duygulu, Kobus Barnard, Joao FG de Freitas, and David A Forsyth.

Object recognition as machine translation: Learning a lexicon for a fixed

image vocabulary. In ECCV, pages 97–112. Springer, 2002.

[59] Pavlos Efraimidis and Paul G. Spirakis. Weighted random sampling with

a reservoir. Inf. Process. Lett., 97(5):181–185, 2006.

[60] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap.

1994.

[61] Christopher B Eiben, Justin B Siegel, Jacob B Bale, Seth Cooper, Firas

Khatib, Betty W Shen, Foldit Players, Barry L Stoddard, Zoran Popovic,

and David Baker. Increased diels-alderase activity through backbone re-

modeling guided by foldit players. Nature biotechnology, 30(2):190–192,

2012.

BIBLIOGRAPHY 305

[62] Brian Eriksson. Learning to top-k search using pairwise comparisons. In

AISTATS, pages 265–273, 2013.

[63] Ju Fan, Guoliang Li, Beng Chin Ooi, Kian-Lee Tan, and Jianhua Feng.

icrowd: An adaptive crowdsourcing framework. In SIGMOD, pages

1015–1030, 2015.

[64] Ju Fan, Meiyu Lu, Beng Chin Ooi, Wang-Chiew Tan, and Meihui Zhang.

A hybrid machine-crowdsourcing system for matching web tables. In

ICDE, 2014.

[65] Ju Fan, Meihui Zhang, Stanley Kok, Meiyu Lu, and Beng Chin Ooi. Crow-

dop: Query optimization for declarative crowdsourcing systems. TKDE,

27(8):2078–2092, 2015.

[66] Meng Fang, Jie Yin, and Dacheng Tao. Active learning for crowdsourcing

using knowledge transfer. In AAAI, pages 1809–1815, 2014.

[67] Siamak Faradani, Bjoern Hartmann, and Panagiotis G. Ipeirotis. What’s

the right price? pricing tasks for finishing on time. In AAAI Workshop,

2011.

[68] Farnoush Farhadi, Elham Hoseini, Sattar Hashemi, and Ali Hamzeh.

Teamfinder: A co-clustering based framework for finding an effective

team of experts in social networks. In ICDM Workshops, pages 107–114,

2012.

[69] Amber Feng, Michael J. Franklin, Donald Kossmann, Tim Kraska, Samuel

Madden, Sukriti Ramesh, Andrew Wang, and Reynold Xin. Crowddb:

Query processing with the vldb crowd. PVLDB, 4(12):1387–1390, 2011.

[70] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and

Reynold Xin. Crowddb: answering queries with crowdsourcing. In SIG-

MOD, pages 61–72, 2011.

306 BIBLIOGRAPHY

[71] Freebase. https://www.freebase.com/.

[72] Jing Gao, Qi Li, Bo Zhao, Wei Fan, and Jiawei Han. Truth discovery and

crowdsourcing aggregation: A unified perspective. PVLDB, 8(12):2048–

2049, 2015.

[73] Jing Gao, Qi Li, Bo Zhao, Wei Fan, and Jiawei Han. Mining reliable in-

formation from passively and actively crowdsourced data. In SIGKDD,

pages 2121–2122. ACM, 2016.

[74] Jinyang Gao, Xuan Liu, Beng Chin Ooi, Haixun Wang, and Gang Chen.

An online cost sensitive decision-making method in crowdsourcing sys-

tems. In SIGMOD, 2013.

[75] Yihan Gao and Aditya G. Parameswaran. Finish them!: Pricing algo-

rithms for human computation. PVLDB, 7(14):1965–1976, 2014.

[76] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton,

Narasimhan Rampalli, Jude W. Shavlik, and Xiaojin Zhu. Corleone:

hands-off crowdsourcing for entity matching. In SIGMOD, pages 601–

612, 2014.

[77] Ryan Gomes, Peter Welinder, Andreas Krause, and Pietro Perona. Crowd-

clustering. In NIPS, pages 558–566, 2011.

[78] Benoı̂t Groz and Tova Milo. Skyline queries with noisy comparisons. In

PODS, pages 185–198, 2015.

[79] Anja Gruenheid, Donald Kossmann, Sukriti Ramesh, and Florian Wid-

mer. Crowdsourcing entity resolution: When is A=B? Technical report,

ETH Zürich.

[80] Stephen Guo, Aditya G. Parameswaran, and Hector Garcia-Molina. So

who won?: dynamic max discovery with the crowd. In SIGMOD, pages

385–396, 2012.

BIBLIOGRAPHY 307

[81] Daniel Haas, Jason Ansel, Lydia Gu, and Adam Marcus. Arg-

onaut: Macrotask crowdsourcing for complex data processing. PVLDB,

8(12):1642–1653, 2015.

[82] Daniel Haas, Jiannan Wang, Eugene Wu, and Michael J Franklin.

Clamshell: Speeding up crowds for low-latency data labeling. PVLDB,

9(4):372–383, 2015.

[83] Kotaro Hara, Vicki Le, and Jon Froehlich. Combining crowdsourcing

and google street view to identify street-level accessibility problems. In

SIGCHI, pages 631–640, 2013.

[84] Hannes Heikinheimo and Antti Ukkonen. The crowd-median algorithm.

In HCOMP, 2013.

[85] Chien-Ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. Adaptive

task assignment for crowdsourced classification. In ICML, pages 534–542,

2013.

[86] Chien-Ju Ho and Jennifer Wortman Vaughan. Online task assignment in

crowdsourcing markets. In AAAI, 2012.

[87] John Joseph Horton and Lydia B. Chilton. The labor economics of paid

crowdsourcing. In ACM Conference on Electronic Commerce, pages 209–218,

2010.

[88] Huiqi Hu, Guoliang Li, Zhifeng Bao, Yan Cui, and Jianhua Feng.

Crowdsourcing-based real-time urban traffic speed estimation: From

trends to speeds. In ICDE, pages 883–894, 2016.

[89] Huiqi Hu, Yudian Zheng, Zhifeng Bao, Guoliang Li, Jianhua Feng, and

Reynold Cheng. Crowdsourced POI labelling: Location-aware result in-

ference and task assignment. In ICDE, pages 61–72, 2016.

308 BIBLIOGRAPHY

[90] Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Zoltán Miklós, and Karl

Aberer. On leveraging crowdsourcing techniques for schema matching

networks. In Database Systems for Advanced Applications, pages 139–154.

Springer, 2013.

[91] Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Lam Ngoc Tran, and Karl

Aberer. An evaluation of aggregation techniques in crowdsourcing. In

WISE, pages 1–15. Springer, 2013.

[92] P. Ipeirotis, F. Provost, and J. Wang. Quality management on amazon

mechanical turk. In SIGKDD workshop, pages 64–67, 2010.

[93] Panagiotis G. Ipeirotis. Analyzing the amazon mechanical turk market-

place. ACM Crossroads, 17(2):16–21, 2010.

[94] Panagiotis G Ipeirotis and Praveen K Paritosh. Managing crowdsourced

human computation: a tutorial. pages 287–288, 2011.

[95] Martin Jansche. A maximum expected utility framework for binary se-

quence labeling. In ACL, 2007.

[96] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. Pay-as-you-go

user feedback for dataspace systems. In SIGMOD, pages 847–860, 2008.

[97] Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Griffitt, and Joe Ellis.

Overview of the tac 2010 knowledge base population track. In TAC, 2010.

[98] Manas Joglekar, Hector Garcia-Molina, and Aditya G. Parameswaran.

Evaluating the crowd with confidence. In SIGKDD, pages 686–694, 2013.

[99] Haim Kaplan, Ilia Lotosh, Tova Milo, and Slava Novgorodov. Answering

planning queries with the crowd. PVLDB, 6(9):697–708, 2013.

[100] David R. Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for

reliable crowdsourcing systems. In NIPS, pages 1953–1961, 2011.

BIBLIOGRAPHY 309

[101] Leyla Kazemi, Cyrus Shahabi, and Lei Chen. Geotrucrowd: trustworthy

query answering with spatial crowdsourcing. In SIGSPATIAL, pages 304–

313, 2013.

[102] Asif R. Khan and Hector Garcia-Molina. Hybrid strategies for finding the

max with the crowd. Technical report, 2014.

[103] Asif R. Khan and Hector Garcia-Molina. Crowddqs: Dynamic question

selection in crowdsourcing systems. In SIGMOD, SIGMOD ’17, pages

1447–1462, New York, NY, USA, 2017. ACM.

[104] Hyun-Chul Kim and Zoubin Ghahramani. Bayesian classifier combina-

tion. In AISTATS, pages 619–627, 2012.

[105] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, New Series, 220(4598):671–680, 1983.

[106] Bryan Klimt and Yiming Yang. Introducing the enron corpus. In Pro-

ceedinds of the 1st Conference on Email and Anti-Spam, 2004.

[107] Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles

and Techniques. MIT Press, 2009.

[108] Solomon Kullback and Richard A Leibler. On information and sufficiency.

The annals of mathematical statistics, 22(1):79–86, 1951.

[109] Aditya Kurve, David J. Miller, and George Kesidis. Multicategory crowd-

sourcing accounting for variable task difficulty, worker skill, and worker

intention. TKDE, 27(3):794–809, 2015.

[110] Alexandre Lacasse, François Laviolette, Mario Marchand, and Francis

Turgeon-Boutin. Learning with randomized majority votes. pages 162–

177, 2010.

[111] Alberto H.F. Laender, Marcos André Gonçalves, Ricardo G. Cota, Ander-

son A. Ferreira, Rodrygo L. T. Santos, and Allan J.C. Silva. Keeping a

310 BIBLIOGRAPHY

digital library clean: New solutions to old problems. In DocEng, pages

257–262. ACM, 2008.

[112] L.D. Landau and E.M. Lifshitz. Statistical Physics. Course of Theoretical

Physics 5 (3 ed.). Oxford: Pergamon Press, 1980.

[113] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of ex-

perts in social networks. In KDD, pages 467–476, 2009.

[114] David D. Lewis. Evaluating and optimizing autonomous text classifica-

tion systems. In SIGIR, pages 246–254, 1995.

[115] Guoliang Li, Chengliang Chai, Ju Fan, Xueping Weng, Jian Li, Yudian

Zheng, Yuanbing Li, Xiang Yu, Xiaohang Zhang, and Haitao Yuan. CDB:

optimizing queries with crowd-based selections and joins. In SIGMOD,

pages 1463–1478, 2017.

[116] Guoliang Li, Jiannan Wang, Yudian Zheng, and Michael J. Franklin.

Crowdsourced data management: A survey. TKDE, 28(9):2296–2319,

2016.

[117] Guoliang Li, Yudian Zheng, Ju Fan, Jiannan Wang, and Reynold Cheng.

Crowdsourced data management: Overview and challenges. In SIGMOD,

pages 1711–1716, 2017.

[118] Qi Li, Yaliang Li, Jing Gao, Lu Su, Bo Zhao, Murat Demirbas, Wei Fan, and

Jiawei Han. A confidence-aware approach for truth discovery on long-tail

data. PVLDB, 8(4):425–436, 2014.

[119] Qi Li, Yaliang Li, Jing Gao, Bo Zhao, Wei Fan, and Jiawei Han. Resolving

conflicts in heterogeneous data by truth discovery and source reliability

estimation. In SIGMOD, pages 1187–1198, 2014.

[120] Qi Li, Fenglong Ma, Jing Gao, Lu Su, and Christopher J Quinn. Crowd-

sourcing high quality labels with a tight budget. In WSDM, 2016.

BIBLIOGRAPHY 311

[121] Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivas-

tava. Truth finding on the deep web: Is the problem solved? PVLDB,

6(2):97–108, 2012.

[122] Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan, and

Jiawei Han. A survey on truth discovery. SIGKDD Explorations, 17(2):1–

16, 2015.

[123] Nick Littlestone and Manfred K. Warmuth. The weighted majority algo-

rithm. Inf. Comput., 108(2):212–261, February 1994.

[124] Bing Liu. Sentiment analysis and opinion mining. Synthesis lectures on

human language technologies, 5(1):1–167, 2012.

[125] Bing Liu and Lei Zhang. A survey of opinion mining and sentiment anal-

ysis. In Mining text data, pages 415–463. Springer, 2012.

[126] Qiang Liu, Jian Peng, and Alexander T. Ihler. Variational inference for

crowdsourcing. In NIPS, pages 701–709, 2012.

[127] Xuan Liu, Meiyu Lu, Beng Chin Ooi, Yanyan Shen, Sai Wu, and Mei-

hui Zhang. Cdas: A crowdsourcing data analytics system. PVLDB,

5(10):1040–1051, 2012.

[128] Christoph Lofi, Kinda El Maarry, and Wolf-Tilo Balke. Skyline queries in

crowd-enabled databases. In EDBT, pages 465–476, 2013.

[129] Christoph Lofi, Kinda El Maarry, and Wolf-Tilo Balke. Skyline queries

over incomplete data - error models for focused crowd-sourcing. In ER,

pages 298–312, 2013.

[130] Ilia Lotosh, Tova Milo, and Slava Novgorodov. Crowdplanr: Planning

made easy with crowd. In ICDE, pages 1344–1347. IEEE, 2013.

312 BIBLIOGRAPHY

[131] Fenglong Ma, Yaliang Li, Qi Li, Minghui Qiu, Jing Gao, Shi Zhi, Lu Su,

Bo Zhao, Heng Ji, and Jiawei Han. Faitcrowd: Fine grained truth discov-

ery for crowdsourced data aggregation. In KDD, pages 745–754, 2015.

[132] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. In-

troduction to information retrieval. Cambridge University Press, 2008.

[133] Christopher D. Manning and Hinrich Schütze. Foundations of statistical

natural language processing. MIT Press, 2001.

[134] Adam Marcus, David R. Karger, Samuel Madden, Rob Miller, and Se-

woong Oh. Counting with the crowd. PVLDB, 6(2):109–120, 2012.

[135] Adam Marcus and Aditya Parameswaran. Crowdsourced data man-

agement industry and academic perspectives. Foundations and Trends in

Databases, 6(1-2):1–161, 2015.

[136] Adam Marcus, Eugene Wu, David R. Karger, Samuel Madden, and

Robert C. Miller. Human-powered sorts and joins. PVLDB, 5(1):13–24,

2011.

[137] Adam Marcus, Eugene Wu, Samuel Madden, and Robert C. Miller.

Crowdsourced databases: Query processing with people. In CIDR, pages

211–214, 2011.

[138] Panagiotis Mavridis, David Gross-Amblard, and Zoltán Miklós. Using

hierarchical skills for optimized task assignment in knowledge-intensive

crowdsourcing. In WWW, pages 843–853, 2016.

[139] David Menestrina, Steven Euijong Whang, and Hector Garcia-Molina.

Evaluating entity resolution results. PVLDB, 3(1-2):208–219, 2010.

[140] Rui Meng, Lei Chen, Yongxin Tong, and Chen Zhang. Knowledge base

semantic integration using crowdsourcing. TKDE, 29(5):1087–1100, May

2017.

BIBLIOGRAPHY 313

[141] Luyi Mo, Reynold Cheng, Ben Kao, Xuan S. Yang, Chenghui Ren, Siyu

Lei, David W. Cheung, and Eric Lo. Optimizing plurality for human in-

telligence tasks. In CIKM, pages 1929–1938, 2013.

[142] Barzan Mozafari, Purna Sarkar, Michael Franklin, Michael Jordan, and

Samuel Madden. Scaling up crowd-sourcing to very large datasets: a case

for active learning. PVLDB, 8(2):125–136, 2014.

[143] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial

Optimization. Wiley-Interscience, 1988.

[144] Quoc Viet Hung Nguyen, Thanh Tam Nguyen, Zoltán Miklós, Karl

Aberer, Asaf Gal, and Matthias Weidlich. Pay-as-you-go reconciliation

in schema matching networks. In ICDE, pages 220–231. IEEE, 2014.

[145] Stefanie Nowak and Stefan Rüger. How reliable are annotations via

crowdsourcing: a study about inter-annotator agreement for multi-label

image annotation. In MIR, pages 557–566, 2010.

[146] Sebastian Nowozin. Optimal decisions from probabilistic models: The

intersection-over-union case. In CVPR, pages 548–555, 2014.

[147] Wentao Robin Ouyang, Lance M. Kaplan, Paul Martin, Alice Toniolo,

Mani B. Srivastava, and Timothy J. Norman. Debiasing crowdsourced

quantitative characteristics in local businesses and services. In IPSN,

pages 190–201, 2015.

[148] Aditya G. Parameswaran, Stephen Boyd, Hector Garcia-Molina, Ashish

Gupta, Neoklis Polyzotis, and Jennifer Widom. Optimal crowd-powered

rating and filtering algorithms. PVLDB, 7(9):685–696, 2014.

[149] Aditya G. Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neok-

lis Polyzotis, Aditya Ramesh, and Jennifer Widom. Crowdscreen: algo-

rithms for filtering data with humans. In SIGMOD, pages 361–372, 2012.

314 BIBLIOGRAPHY

[150] Aditya G. Parameswaran, Anish Das Sarma, Hector Garcia-Molina,

Neoklis Polyzotis, and Jennifer Widom. Human-assisted graph search:

it’s okay to ask questions. PVLDB, 4(5):267–278, 2011.

[151] Aditya Ganesh Parameswaran, Hyunjung Park, Hector Garcia-Molina,

Neoklis Polyzotis, and Jennifer Widom. Deco: declarative crowdsourc-

ing. In CIKM, pages 1203–1212, 2012.

[152] Hyunjung Park and Jennifer Widom. Crowdfill: collecting structured data

from the crowd. In SIGMOD, pages 577–588, 2014.

[153] Partition Problem. http://en.wikipedia.org/wiki/Partition_

problem.

[154] Thomas Pfeiffer, Xi Alice Gao, Yiling Chen, Andrew Mao, and David G.

Rand. Adaptive polling for information aggregation. In AAAI, 2012.

[155] Ravali Pochampally, Anish Das Sarma, Xin Luna Dong, Alexandra Me-

liou, and Divesh Srivastava. Fusing data with correlations. In SIGMOD,

pages 433–444, 2014.

[156] Layla Pournajaf, Li Xiong, Vaidy Sunderam, and Slawomir Goryczka.

Spatial task assignment for crowd sensing with cloaked locations. In

MDM, volume 1, pages 73–82. IEEE, 2014.

[157] Project Page. http://dbgroup.cs.tsinghua.edu.cn/ligl/crowd_

truth_inference/.

[158] QA. https://webscope.sandbox.yahoo.com/catalog.php?datatype=

l&did=76.

[159] L. Ratinov, D. Roth, D. Downey, and M. Anderson. Local and global algo-

rithms for disambiguation to wikipedia. In ACL, pages 1375–1384, 2011.

BIBLIOGRAPHY 315

[160] Vikas C. Raykar and Shipeng Yu. Eliminating spammers and ranking

annotators for crowdsourced labeling tasks. Journal of Machine Learning

Research, 13:491–518, 2012.

[161] Vikas C Raykar, Shipeng Yu, Linda H Zhao, Gerardo Hermosillo Valadez,

Charles Florin, Luca Bogoni, and Linda Moy. Learning from crowds.

JMLR, 11(Apr):1297–1322, 2010.

[162] Theodoros Rekatsinas, Xin Luna Dong, and Divesh Srivastava. Character-

izing and selecting fresh data sources. In SIGMOD, pages 919–930. ACM,

2014.

[163] S. H. Rice. A stochastic version of the price equation reveals the interplay

of deterministic and stochastic processes in evolution. BMC evolutionary

biology, 8:262, 2008.

[164] Senjuti Basu Roy, Ioanna Lykourentzou, Saravanan Thirumuruganathan,

Sihem Amer-Yahia, and Gautam Das. Task assignment optimization in

knowledge-intensive crowdsourcing. VLDBJ, 24(4):467–491, 2015.

[165] Anish Das Sarma, Aditya G. Parameswaran, Hector Garcia-Molina, and

Alon Y. Halevy. Crowd-powered find algorithms. In ICDE, pages 964–

975, 2014.

[166] Asad B. Sayeed, Timothy J. Meyer, Hieu C. Nguyen, Olivia Buzek, and

Amy Weinberg. Crowdsourcing the evaluation of a domain-adapted

named entity recognition system. In HLT-NAACL, pages 345–348, 2010.

[167] C. E. Shannon. A mathematical theory of communication. SIGMOBILE

Mob. Comput. Commun. Rev., 5(1):3–55, January 2001.

[168] Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowl-

edge base: Issues, techniques, and solutions. TKDE, 27(2):443–460, 2015.

316 BIBLIOGRAPHY

[169] Aashish Sheshadri and Matthew Lease. SQUARE: A Benchmark for Re-

search on Computing Crowd Consensus. In Proceedings of the 1st AAAI

Conference on Human Computation (HCOMP), pages 156–164, 2013.

[170] Edwin D Simpson, Matteo Venanzi, Steven Reece, Pushmeet Kohli, John

Guiver, Stephen J Roberts, and Nicholas R Jennings. Language under-

standing in the wild: Combining crowdsourcing and machine learning.

In WWW, pages 992–1002, 2015.

[171] Yaron Singer and Manas Mittal. Pricing mechanisms for crowdsourcing

markets. In WWW, pages 1157–1166, 2013.

[172] Padhraic Smyth, Usama M. Fayyad, Michael C. Burl, Pietro Perona, and

Pierre Baldi. Inferring ground truth from subjective labelling of venus

images. In NIPS, pages 1085–1092, 1994.

[173] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y Ng.

Cheap and fast—but is it good?: evaluating non-expert annotations for

natural language tasks. In EMNLP, pages 254–263, 2008.

[174] Han Su, Kai Zheng, Jiamin Huang, Hoyoung Jeung, Lei Chen, and Xiao-

fang Zhou. Crowdplanner: A crowd-based route recommendation sys-

tem. In ICDE, pages 1144–1155. IEEE, 2014.

[175] Han Su, Kai Zheng, Jiamin Huang, Tianyu Liu, Haozhou Wang, and Xiao-

fang Zhou. A crowd-based route recommendation system-crowdplanner.

In ICDE, pages 1178–1181, 2014.

[176] John R. Talburt. Entity Resolution and Information Quality. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 2010.

[177] Yongxin Tong, Caleb Chen Cao, and Lei Chen. Tcs: Efficient topic dis-

covery over crowd-oriented service data. In SIGKDD, KDD ’14, pages

861–870, New York, NY, USA, 2014. ACM.

BIBLIOGRAPHY 317

[178] Salvatore Trani, Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando,

and Raffaele Perego. Dexter 2.0-an open source tool for semantically en-

riching data. In ICWS, pages 417–420, 2014.

[179] Beth Trushkowsky, Tim Kraska, Michael J. Franklin, and Purnamrita

Sarkar. Crowdsourced enumeration queries. In ICDE, pages 673–684,

2013.

[180] Twitter Sentiment. http://www.sananalytics.com/lab/

twitter-sentiment/.

[181] C.J. Van Rijsbergen. Information retrieval. Butterworths, 1979.

[182] Matteo Venanzi, John Guiver, Gabriella Kazai, Pushmeet Kohli, and Milad

Shokouhi. Community-based bayesian aggregation models for crowd-

sourcing. In WWW, pages 155–164, 2014.

[183] Petros Venetis and Hector Garcia-Molina. Quality control for comparison

microtasks. In Proceedings of the First International Workshop on Crowdsourc-

ing and Data Mining, pages 15–21. ACM, 2012.

[184] Petros Venetis, Hector Garcia-Molina, Kerui Huang, and Neoklis Polyzo-

tis. Max algorithms in crowdsourcing environments. In WWW, pages

989–998, 2012.

[185] Rares Vernica, Michael J Carey, and Chen Li. Efficient parallel set-

similarity joins using mapreduce. In SIGMOD, pages 495–506. ACM,

2010.

[186] Vasilis Verroios and Hector Garcia-Molina. Entity resolution with crowd

errors. In ICDE, pages 219–230, 2015.

[187] Vasilis Verroios, Hector Garcia-Molina, and Yannis Papakonstantinou.

Waldo: An adaptive human interface for crowd entity resolution. In SIG-

MOD, SIGMOD ’17, pages 1133–1148, New York, NY, USA, 2017. ACM.

318 BIBLIOGRAPHY

[188] Vasilis Verroios, Peter Lofgren, and Hector Garcia-Molina. tdp: An

optimal-latency budget allocation strategy for crowdsourced MAXIMUM

operations. In SIGMOD, pages 1047–1062, 2015.

[189] Norases Vesdapunt, Kedar Bellare, and Nilesh N. Dalvi. Crowdsourcing

algorithms for entity resolution. PVLDB, 7(12):1071–1082, 2014.

[190] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and

Manuel Blum. recaptcha: Human-based character recognition via web

security measures. Science, 321(5895):1465–1468, 2008.

[191] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponen-

tial families, and variational inference. Foundations and Trends in Machine

Learning, 1(1-2):1–305, 2008.

[192] Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua Feng. Crow-

dER: crowdsourcing entity resolution. PVLDB, 5(11):1483–1494, 2012.

[193] Jiannan Wang, Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Tim

Kraska, and Tova Milo. A sample-and-clean framework for fast and ac-

curate query processing on dirty data. In SIGMOD, pages 469–480, 2014.

[194] Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we beat the prefix

filtering?: an adaptive framework for similarity join and search. In SIG-

MOD, pages 85–96, 2012.

[195] Jiannan Wang, Guoliang Li, Tim Kraska, Michael J. Franklin, and Jianhua

Feng. Leveraging transitive relations for crowdsourced joins. In SIGMOD,

pages 229–240, 2013.

[196] Sibo Wang, Xiaokui Xiao, and Chun-Hee Lee. Crowd-based deduplica-

tion: An adaptive approach. In SIGMOD, pages 1263–1277, 2015.

[197] Peter Welinder, Steve Branson, Pietro Perona, and Serge J Belongie. The

multidimensional wisdom of crowds. In NIPS, pages 2424–2432, 2010.

BIBLIOGRAPHY 319

[198] Peter Welinder and Pietro Perona. Online crowdsourcing: rating anno-

tators and obtaining cost-effective labels. In CVPR Workshop (ACVHL),

pages 25–32. IEEE, 2010.

[199] Steven Euijong Whang, Peter Lofgren, and Hector Garcia-Molina. Ques-

tion selection for crowd entity resolution. PVLDB, 6(6):349–360, 2013.

[200] Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob Bergsma, and Javier R.

Movellan. Whose vote should count more: Optimal integration of labels

from labelers of unknown expertise. In NIPS, pages 2035–2043, 2009.

[201] Wikipedia Topic Classification. https://en.wikipedia.org/wiki/

Category:Main_topic_classifications.

[202] word2vec. https://code.google.com/p/word2vec/.

[203] Sai Wu, Xiaoli Wang, Sheng Wang, Zhenjie Zhang, and Anthony K. H.

Tung. K-anonymity for crowdsourcing database. TKDE, 26(9):2207–2221,

2014.

[204] Yahoo Answers. https://answers.yahoo.com/dir/index.

[205] Tingxin Yan, Vikas Kumar, and Deepak Ganesan. Crowdsearch: exploit-

ing crowds for accurate real-time image search on mobile phones. In Mo-

biSys, pages 77–90, 2010.

[206] Yan Yan, Glenn M Fung, Rómer Rosales, and Jennifer G Dy. Active learn-

ing from crowds. In ICML, pages 1161–1168, 2011.

[207] Yan Yan, Rómer Rosales, Glenn Fung, Mark W Schmidt, Gerardo H

Valadez, Luca Bogoni, Linda Moy, and Jennifer G Dy. Modeling anno-

tator expertise: Learning when everybody knows a bit of something. In

AISTATS, pages 932–939, 2010.

320 BIBLIOGRAPHY

[208] Liu Yang, Minghui Qiu, Swapna Gottipati, Feida Zhu, Jing Jiang, Huiping

Sun, and Zhong Chen. Cqarank: jointly model topics and expertise in

community question answering. In CIKM, pages 99–108, 2013.

[209] Peng Ye, UMD EDU, and David Doermann. Combining preference and

absolute judgements in a crowd-sourced setting. In ICML Workshop, 2013.

[210] Ying Yu, Witold Pedrycz, and Duoqian Miao. Multi-label classification by

exploiting label correlations. Expert Systems with Applications, 2014.

[211] Chen Jason Zhang, Lei Chen, H. V. Jagadish, and Caleb Chen Cao. Reduc-

ing uncertainty of schema matching via crowdsourcing. PVLDB, 6(9):757–

768, 2013.

[212] Chen Jason Zhang, Yongxin Tong, and Lei Chen. Where to: Crowd-aided

path selection. PVLDB, 7(14):2005–2016, 2014.

[213] Min-Ling Zhang and Kun Zhang. Multi-label learning by exploiting label

dependency. In KDD, pages 999–1008. ACM, 2010.

[214] Xiaohang Zhang, Guoliang Li, and Jianhua Feng. Crowdsourced top-k

algorithms: An experimental evaluation. PVLDB, 9(8):612–623, 2016.

[215] Bo Zhao, Benjamin IP Rubinstein, Jim Gemmell, and Jiawei Han. A

bayesian approach to discovering truth from conflicting sources for data

integration. PVLDB, 5(6):550–561, 2012.

[216] Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim,

Hongfei Yan, and Xiaoming Li. Comparing twitter and traditional me-

dia using topic models. In ECIR, pages 338–349. 2011.

[217] Zhou Zhao, Furu Wei, Ming Zhou, Weikeng Chen, and Wilfred Ng.

Crowd-selection query processing in crowdsourcing databases: A task-

driven approach. In EDBT, pages 397–408, 2015.

BIBLIOGRAPHY 321

[218] Zhou Zhao, Da Yan, Wilfred Ng, and Shi Gao. A transfer learning based

framework of crowd-selection on twitter. In SIGKDD, pages 1514–1517,

2013.

[219] Yudian Zheng, Reynold Cheng, Silviu Maniu, and Luyi Mo. On optimal-

ity of jury selection in crowdsourcing. In EDBT, pages 193–204, 2015.

[220] Yudian Zheng, Guoliang Li, and Reynold Cheng. DOCS: domain-aware

crowdsourcing system. PVLDB, 10(4):361–372, 2016.

[221] Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold

Cheng. Truth inference in crowdsourcing: Is the problem solved? PVLDB,

10(5):541–552, 2017.

[222] Yudian Zheng, Jiannan Wang, Guoliang Li, Reynold Cheng, and Jianhua

Feng. Qasca: A quality-aware task assignment system for crowdsourcing

applications. In SIGMOD, pages 1031–1046, 2015.

[223] Shi Zhi, Bo Zhao, Wenzhu Tong, Jing Gao, Dian Yu, Heng Ji, and Jiawei

Han. Modeling truth existence in truth discovery. In KDD, pages 1543–

1552, 2015.

[224] Jinhong Zhong, Ke Tang, and Zhi-Hua Zhou. Active learning from

crowds with unsure option. In IJCAI, pages 1061–1068, 2015.

[225] Dengyong Zhou, Qiang Liu, John Platt, and Christopher Meek. Aggregat-

ing ordinal labels from crowds by minimax conditional entropy. In ICML,

pages 262–270, 2014.

[226] Denny Zhou, Sumit Basu, Yi Mao, and John C Platt. Learning from the

wisdom of crowds by minimax entropy. In NIPS, pages 2195–2203, 2012.

[227] Songchun Zhu, Yu Wu, and David Mumford. Minimax entropy principle

and its application to texture modeling. Neural computation, 9(8):1627–

1660, 1997.

322 BIBLIOGRAPHY

[228] SG Zhukov, VV Chernyshev, EV Babaev, EJ Sonneveld, and H Schenk.

Application of simulated annealing approach for structure solution of

molecular crystals from x-ray laboratory powder data. Zeitschrift für

Kristallographie/International journal for structural, physical, and chemical as-

pects of crystalline materials, 216(1/2001):5–9, 2001.

