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Introduction
• Attributed heterogeneous information network (AHIN)
p Heterogeneous information network
o multiple types of objects
o different types of links
p Object attributes
p Example: Facebook Open Graph
o objects: users, pages, photos, events, etc.
o attributes:
• users (gender, age, school, etc.),
• photo (lat-long, date/time)
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Meta-path

• A meta-path is a sequence of object types that expresses a 
relation between objects
• Example: Facebook Open Graph

p objects: users (U), product pages (P), etc.

• UPU: user-page-user (two users like the same product page)
• UUU: user-user-user (two users have a common friend)
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Challenge

• Why clustering in attributed heterogeneous information networks?
• Link-based similarity

p simple network distance measure (eg: random walk)
p meta-path based measure (eg: PathSim)

• Attribute-based similarity
• Challenge1: how to aggregate various types of similarities?
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Challenge

• Not all the attributes and meta-paths are useful
• Automatic process to select best attributes and meta-paths
• User can provide guidance to supervise the clustering
• Challenge2: how to automatically perform the selection?
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Attribute-based similarity

• Suppose xu has attribute vector fu, xv has attribute vector fu

• sim() can be any standard similarity function defined over the j-th
attribute
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Link-based similarity

• An effective meta-path based measure: PathSim
• Each meta path Pj defines a similarity measure Spj

• Suppose we have m meta paths, then

• To combine attribute-based and link-based similarity, we have:
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Supervision constraints

• Must-link set M and cannot-link set C (user supervision)
• To measure the clustering quality,
1. How similar intra-cluster and inter-cluster objects are?
2. How well the cluster agrees with the supervision constraints?
• we use normalized cuts to be the measure
p reward object pairs in M which are clustered in the same cluster
p penalize objects pairs in C which are clustered in the same cluster
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• Our goal is to minimize J

• Constraints:
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Optimization

• An iterative method
• Optimize              given     and 
• Transform into spectral clustering optimization problem

• Optimize      and      given
• Transform into a non-linear fractional programming problem 
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Experiment

• Task1: Yelp-Business
q businesses (B), cities (C), users (U) and categories (T)
q business attributes: lat-long, review count, quality star and lot
q meta-paths = {BCB (two businesses are in the same city), BUB (two

businesses have the same customer), BTB (two businesses are of the
same category)}

q clustering objective: to cluster businesses by geographical state
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Experiment

• Task2: Yelp-Restaurant
q restaurants (B), reviews (R), users (U) and keywords (K)
q restaurant attributes: service, reserve, review count, quality star and lot
q meta-paths = {BRURB (two restaurants have reviews written by the

same customer), BRKRB (two restaurants have reviews with the same
keyword)}

q clustering objective: to cluster restaurants by category
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Experiment

• Task3: DBLP
q authors (A), papers (P) and terms (T)
q author attributes: published paper count to CIKM, KDD,VLDB and 

SIGIR
q meta-paths = {APA (co-authorship), APAPA (two authors publish

papers with the same coauthor), APTPA (two authors publish papers
with the same keyword)}

q clustering objective: to cluster authors by research interests
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Clustering quality
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Weight learning
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Weight learning
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Weight learning
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Convergence analysis

20



Conclusion

• We studied semi-supervised clustering in AHINs
• We proposed a novel algorithm SCHAIN which considers both object 

attributes and meta-paths
• We experimentally proves the usefulness of SCHAIN
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Thank you!
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